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Outline

e Motion Control Problems

e Motion Control with Velocity /Acceleration as Input

e Motion Control with Torque as Input

e Task-Space Error in SO(3)/SE(3)
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Robot Motion Control Problems (1/1)

® Dynamic equation of fully-actuated robot (without external force):

{7’ = M(0)§+ c(q,q)¢ + g(q +TF€M-

,t y = h(q)

® ¢ € R™: joint positions (generalized coordinate)
e 7 ¢ R™: joint torque (generalized input)
® y € RP: output (variable to be controlled)

® Motion Control Problems: Let y track given reference @
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Variations in Robot Motion Control Typaly, 4w (.. the wferae)

® Joint-space vs. Task-space control: S goen by ?\“’“‘@ﬁ YePvesented
- Joint-space: y(t) = q(t), i.e., want ¢(t) to track a givenlqd(t)‘joint reference L’j
P‘)blﬂll“!l

= T'(q(t)) denotes end-effector pose/configuration, we want
t) SN

- Task-space: y(t)

y(t) to track ya( —fmJarrL Linemwtics \ £ typirally, g, 7%
/
0/'° not~ have 5 mu
® Actuation models: 8 ey
- Velocity source: u = q bk O+ ot
y q ) At ), measurmer A-te
hard oW
W\ ~
- Acceleration sources: u = ¢ ‘ bt “’“") .
T~ g __ —

- Torque sources: u =T J
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Outline

e Motion Control with Velocity /Acceleration as Input
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Velocity-Resolved Control ﬁ&

® Each joints’ velocity ¢; can be directly controlled
; n :

® Good approximation for hydraulic actuators

® |nner/outer loop control diagram / dineay
/- Aasnnd f/(" Model  ¢- 4
QO( onter '
el
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Velocity-Resolved Joint Space Control

® Joint-space “dynamics”: single integrator

qg=u GIR"

® Joint-space tracking Hecomes standard linear tracking control problem:

u = Gq + Kog :>§+KO
= Lryor = -
where ¢ = g4 — q is the joint position error. \Q ? thg
/knxn @(R’l

7:=‘iﬂt+'<°;1\,/=)a;@,(—’z>+ L9 =0

® The error dynamic is stable if —K is Hurwitz %"' 5 év;o
BIYARE . = —k‘m\.,\: A g —kto
i { T=-t19 = §w=¢ {b)
‘_“') FYuluu.ca olsmor o
e:‘j(~]4,)6 OLAY
X = Af)(
K

\
émmon C‘A"‘U " P" [h"buz J ,wM (<o,{ >
,N
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Velocity-Resolved Task-Space Control (1/3)

® For task space control, y = T'(q) needs to track yq4

- y can be any function of ¢, in particular, it can represents position and/or the

end-effector frame U: T(‘L) = (R, P

® Taking derivatives of vy, and letting u = ¢, we have

y — Ja(Q)u (2)
1

- Note that ¢ is function of y through inverse kinematics.

1= THy)

- So the above dynamics can be written in terms of ¥y and u only. The detailed
form can be quite complex in general \

9 jﬁ(lk(m u XY

(
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Velocity-Resolved Task-Space Control (2/3)

® System (2) is nonlinear system, a common way is to break it into inner-outer
loop, where the outer loop directly control velocity of y, and the inner loop
tries to find u to generate desired task space velocity

J

e Quter Ioop:l_\y":\@]where control v, = g4 + Ko7, resulting in task-space

closed-loop error dynamics: . T s y
i+ Ko = 0 =9
= Yol + )
= u ‘-t‘) T 6 '\t)/:‘\)
[+ ke Ges

® Above task space tracking relies on a fictitious control v,, i.e., it assumes y
can be arbitrarily controlled by selecting appropriate © = ¢, which is true if

(;(Ho ("n('ﬂ(’

EEESSS s

Jg is full-row rank. k944 %
L
oty (VY [ Tnne\ —
I Lew DIk) l 2asd 0
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Velocity-Resolved Task-Space Control (3/3)

® |nner loop: Given v, from the outer loop, find the joint velocity control b
P Yy P J y y

solving

min,, ||v, — Jo(q)u||?* + regularization term
subj. to: Constraints on 4 We & W< Uy

N

:jO'un,Jt \,CLC""?D (witg

® |nner-loop is essentially a differential IK controller
5> - INVOIS

/) 16

® One can also use the pseudo-inverse control u —:ngy

— Th Cew n: D\(JYPM"‘C (mehiant ny —~—

- SN ‘(W)w‘p\ﬂz&\ﬁw\ term
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Acceleration-Resolved Control in Joint Space

Yobot model

® Joint acceleration can be directly controlled, resulting in doq&e—integrator

dynamics 1 —n v
g . R gl TV
G =u -
T AN
® Joint-space tracking becomes standard ljnear tracking control problem for
double-integrator system:

=qa+ Keq+ Kog = G+ K1G+ Kog=10

——

where ¢ = q4 — q i1s the joint position error.

Ny - °: J . I X¢
® Stability condition: (’Yﬁ“{ = Ek-,_xx%}

——

A bty € 0

— A T
()Mmen (h’?cz k-‘*[k“ '._O y I<|=l: M". ° \X
O l“lV\ \) | l<\.r\
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Acceleration-Resolved Control in Task Space (1/2)

® For task space control, y = T'(q) needs to track yq4

We an cheoge U b(;‘\lft

. ¢
* Note: § = Ju()d and §j = Ju(q)d + Ja(q)@

W

V) prke ol HasAccelers

® Following the same inner-outer loop strategy discussed before

v

® Quter-loop dynamics: 4 =(a,)\ with a, being the outer-loop control input

A

ay =ja+Kiy+ Koy = y+FEKiy+Key=0

—— N
A~ [o 1
‘K° ‘ka
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Acceleration-Resolved Control in Task Space (2/2)

® Inner-loop: Given a, from outer loop, find the "best” joint acceleration:

min,, ||a, —MHQ + regularization term

. . (4)
C subj. to: Constraints on u
y,

IS WS Gy ) A i“'"‘"* ¢ Rovac

® Mathematically, the above problem is the same as the Differential IK problem

® At any given time, ¢, ¢ can be measured, and then y and y can be computed,
which allows us to compute outer loop control a, and inter loop control u
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Outline

e Motion Control with Torque as Input

Torque-Based Motion Control Advanced Control for Robotics Wei Zhang (SUSTech) 14 / 33



Recall Properties of Robot Dynamics

For fully actuated robot: A

A
T=M(q)§+ Clq,4)q+ 9(q) (5)

4
® M(q) e R™*" = (0 & l)vﬂ’ﬁﬂ de{—mi%( ) f:)W\ € g:

® There are many valid definitions of C'(q, ¢), typical choice for C' include:

1 [0My; OMy OMj
Ci _22 [ dqr, " Dq; dq; ]

k

® For the above defined C, we have M — 2C' is skew symmetric
® For all valid C, we have ' [M — 20} g=0

® These properties play important role in designing motion controller
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Computed Torque Control (1/2)

® For fully-actuated robot, we have M(q) > 0 and ¢ can be arbitrarily specified
through torque control u =7

G=M""(q)[u—Clq,4)q — g(q)]

® Thus, for fully-actuated robot, torque controlled case can be reduced to the
acceleration-resolved case

® Quter loop: ¢ = a, with joint acceleration as control input

ay =g+ Ki1Gg+KoG = G+ KiGg+ KoGg=0

® Inner loop: since M (q) is square and nonsingular, inner loop control u can be
found analytically:

u= M(q) (4a + K1G + KoqG) + C(q,4)d + 9(q) (6)
—

Y,
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Computed Torque Control (2/2)

The control law (6) is a function of ¢, ¢ and the reference q4. It is called
computed-torque control.

The control law also relies on system model M, C, g, if these model
information are not accurate, the control will not perform well.

ldea easily extends to task space: § = J,(q)¢ and § = J.(q)d + Ja(q
Outer loop: 4§ = a,, and a, = Jq + Klgj + Koy {R NAI((A-\CIE‘J)

Inner loop: select torque control u = 7 by

(7)

miny, ||la, — Jog — J.M " (u — Cg — g)||?
subj. to: constraints

If J, is invertible and we don't impose additional torque constraints,
analytical control law can be easily obtained.
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D
Inverse Dynamics Control (1/2)
Invers

® The computed-torque controller in (6) is also called inverse dynamics control

® Forward dynamics: given 7 to compute ¢

® |nverse dynamics: given desired acceleration a,, we inverted it to find the
required control by u = Ma, + Cq+ g

® Task space case can be viewed as inverting the task space dynamics
2% >Pat - odl =t e

\sID

® \With recent advances in optimization, it is often preferred to do ID with
quadratic program
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Inverse Dynamics Control (2/2)

® For example, Eq (7) can be viewed as task-space ID. We can incorporate
torque contraints explicitly as follows:

miny [lay — Jog — Jo M~ (u—Cq— g)|
subj. to: u_ <wu < wuy

® This is equivalent to the following more popular form:

/

min lay, — jaq — Ja‘jHQ

u,q
q subj. to: Mi+Ci+g=u (9)
\ Uu— < u < Uy
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Outline

e Task-Space Error in SO(3)/SE(3)
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How to Specify Desired a, in SE(3)?
® Task space desired reference is given in SE(3), i.e.,
ya(t) = (pa(t), Ra(t))
® Current end-effector (body) configuration y(t) = (py(t), Rp(t))
® Quter-loop control consists of position and angular accelerations:
@i
® Position vector py(t) and py(t) lie in Euclidean space, so

P
op=da+ Kfpa)t Kifpn) P AP

¢ /o

where pay = pa — po

® Orientation Ry(t) and R4(t) lies in SO(3), specifications of angular errors
and their derivative are nontrivial.
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Euler Angle Errors: Direct Method (1/3\&
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Euler Angle Errors: Direct Method (2/3)
+ = 58 Tl [ - Tleog,]
2 Dur Debersbooy el @Q=T(0) (Yt ko 15, +
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Euler Angle Errors: Direct Method (3/3)
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Euler Angleﬂgrrors: Relative Orientation (1/3)
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Euler Angle Errors: Relative Orientation (2/3)
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Euler Angle Errors: Relative Orientation (3/3)
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N—/\

Exponential Coordinate Error (1/3)
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Exponential Coordinate Error (2/3) = (1+A+ /2\_1 >A
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Exponential Coordinate Error (3/3)
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