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Outline

• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input

• Task-Space Error in SO(3)/SE(3)

Outline Advanced Control for Robotics Wei Zhang (SUSTech) 2 / 33



Robot Motion Control Problems (1/1)

• Dynamic equation of fully-actuated robot (without external force):{
τ = M(θ)q̈ + c(q, q̇)q̇ + g(q)

y = h(q)
(1)

• q ∈ R
n: joint positions (generalized coordinate)

• τ ∈ R
n: joint torque (generalized input)

• y ∈ R
p: output (variable to be controlled)

• Motion Control Problems: Let y track given reference yd

Problem Statement Advanced Control for Robotics Wei Zhang (SUSTech) 3 / 33



Variations in Robot Motion Control

• Joint-space vs. Task-space control:

- Joint-space: y(t) = q(t), i.e., want q(t) to track a given qd(t) joint reference

- Task-space: y(t) = T (q(t)) denotes end-effector pose/configuration, we want
y(t) to track yd(t)

• Actuation models:

- Velocity source: u = q̇

- Acceleration sources: u = q̈

- Torque sources: u = τ
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• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input

• Task-Space Error in SO(3)/SE(3)
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Velocity-Resolved Control

• Each joints’ velocity q̇i can be directly controlled

• Good approximation for hydraulic actuators

• Inner/outer loop control diagram
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Velocity-Resolved Joint Space Control

• Joint-space “dynamics”: single integrator

q̇ = u

• Joint-space tracking becomes standard linear tracking control problem:

u = q̇d +K0q̃ ⇒ ˙̃q +K0q̃ = 0

where q̃ = qd − q is the joint position error.

• The error dynamic is stable if −K0 is Hurwitz
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Velocity-Resolved Task-Space Control (1/3)

• For task space control, y = T (q) needs to track yd

- y can be any function of q, in particular, it can represents position and/or the
end-effector frame

• Taking derivatives of y, and letting u = q̇, we have

ẏ = Ja(q)u (2)

- Note that q is function of y through inverse kinematics.

- So the above dynamics can be written in terms of y and u only. The detailed
form can be quite complex in general
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Velocity-Resolved Task-Space Control (2/3)
• System (2) is nonlinear system, a common way is to break it into inner-outer
loop, where the outer loop directly control velocity of y, and the inner loop
tries to find u to generate desired task space velocity

• Outer loop: ẏ = vy, where control vy = ẏd +K0ỹ, resulting in task-space
closed-loop error dynamics:

˙̃y +K0ỹ = 0

• Above task space tracking relies on a fictitious control vy, i.e., it assumes ẏ
can be arbitrarily controlled by selecting appropriate u = q̇, which is true if
Ja is full-row rank.
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Velocity-Resolved Task-Space Control (3/3)
• Inner loop: Given vy from the outer loop, find the joint velocity control by

solving {
minu ‖vy − Ja(q)u‖2 + regularization term

subj. to: Constraints on u
(3)

• Inner-loop is essentially a differential IK controller

• One can also use the pseudo-inverse control u = J†
avy
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Acceleration-Resolved Control in Joint Space

• Joint acceleration can be directly controlled, resulting in double-integrator
dynamics

q̈ = u

• Joint-space tracking becomes standard linear tracking control problem for
double-integrator system:

u = q̈d +K1
˙̃q +K0q̃ ⇒ ¨̃q +K1

˙̃q +K0q̃ = 0

where q̃ = qd − q is the joint position error.

• Stability condition:
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Acceleration-Resolved Control in Task Space (1/2)

• For task space control, y = T (q) needs to track yd

• Note: ẏ = Ja(q)q̇ and ÿ = J̇a(q)q̇ + Ja(q)q̈

• Following the same inner-outer loop strategy discussed before

• Outer-loop dynamics: ÿ = ay, with ay being the outer-loop control input

ay = ÿd +K1
˙̃y +K0ỹ ⇒ ¨̃y +K1

˙̃y +K0ỹ = 0
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Acceleration-Resolved Control in Task Space (2/2)
• Inner-loop: Given ay from outer loop, find the “best” joint acceleration:{

minu ‖ay − J̇a(q)q̇ − Ja(q)u‖2 + regularization term

subj. to: Constraints on u
(4)

• Mathematically, the above problem is the same as the Differential IK problem

• At any given time, q, q̇ can be measured, and then y and ẏ can be computed,
which allows us to compute outer loop control ay and inter loop control u
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Outline

• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input

• Task-Space Error in SO(3)/SE(3)
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Recall Properties of Robot Dynamics

For fully actuated robot:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) (5)

• M(q) ∈ R
n×n � 0

• There are many valid definitions of C(q, q̇), typical choice for C include:

Cij =
∑
k

1

2

[
∂Mij

∂qk
+

∂Mik

∂qj
− ∂Mjk

∂qi

]

• For the above defined C, we have Ṁ − 2C is skew symmetric

• For all valid C, we have q̇T
[
Ṁ − 2C

]
q̇ = 0

• These properties play important role in designing motion controller
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Computed Torque Control (1/2)

• For fully-actuated robot, we have M(q) � 0 and q̈ can be arbitrarily specified
through torque control u = τ

q̈ = M−1(q) [u− C(q, q̇)q̇ − g(q)]

• Thus, for fully-actuated robot, torque controlled case can be reduced to the
acceleration-resolved case

• Outer loop: q̈ = aq with joint acceleration as control input

aq = q̈d +K1
˙̃q +K0q̃ ⇒ ¨̃q +K1

˙̃q +K0q̃ = 0

• Inner loop: since M(q) is square and nonsingular, inner loop control u can be
found analytically:

u = M(q)
(
q̈d +K1

˙̃q +K0q̃
)
+ C(q, q̇)q̇ + g(q) (6)
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Computed Torque Control (2/2)
• The control law (6) is a function of q, q̇ and the reference qd. It is called

computed-torque control.

• The control law also relies on system model M,C, g, if these model
information are not accurate, the control will not perform well.

• Idea easily extends to task space: ẏ = Ja(q)q̇ and ÿ = J̇a(q)q̇ + Ja(q)q̈

• Outer loop: ÿ = ay, and ay = ÿd +K1
˙̃y +K0ỹ

• Inner loop: select torque control u = τ by{
minu ‖ay − J̇aq̇ − JaM

−1(u− Cq̇ − g)‖2
subj. to: constraints

(7)

• If Ja is invertible and we don’t impose additional torque constraints,
analytical control law can be easily obtained.
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Inverse Dynamics Control (1/2)

• The computed-torque controller in (6) is also called inverse dynamics control

• Forward dynamics: given τ to compute q̈

• Inverse dynamics: given desired acceleration aq, we inverted it to find the
required control by u = Maq + Cq̇ + g

• Task space case can be viewed as inverting the task space dynamics

• With recent advances in optimization, it is often preferred to do ID with
quadratic program
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Inverse Dynamics Control (2/2)
• For example, Eq (7) can be viewed as task-space ID. We can incorporate
torque contraints explicitly as follows:{

minu ‖ay − J̇aq̇ − JaM
−1(u− Cq̇ − g)‖2

subj. to: u− ≤ u ≤ u+

(8)

• This is equivalent to the following more popular form:⎧⎪⎪⎨
⎪⎪⎩
min
u,q̈

‖ay − J̇aq̇ − Jaq̈‖2

subj. to: Mq̈ + Cq̇ + g = u

u− ≤ u ≤ u+

(9)
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Outline

• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input

• Task-Space Error in SO(3)/SE(3)

Error in SE(3) Advanced Control for Robotics Wei Zhang (SUSTech) 20 / 33



How to Specify Desired ay in SE(3)?

• Task space desired reference is given in SE(3), i.e.,

yd(t) = (pd(t), Rd(t))

• Current end-effector (body) configuration y(t) = (pb(t), Rb(t))

• Outer-loop control consists of position and angular accelerations:

ay =

[
ap
aR

]

• Position vector pb(t) and pd(t) lie in Euclidean space, so

ap = p̈d +KDṗdb +KP pdb

where pdb = pd − pb

• Orientation Rb(t) and Rd(t) lies in SO(3), specifications of angular errors
and their derivative are nontrivial.
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Euler Angle Errors: Direct Method (1/3)
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Euler Angle Errors: Direct Method (2/3)
•
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Euler Angle Errors: Direct Method (3/3)
•
•
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Euler Angle Errors: Relative Orientation (1/3)
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Euler Angle Errors: Relative Orientation (2/3)
•
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Euler Angle Errors: Relative Orientation (3/3)
•
•
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Exponential Coordinate Error (1/3)
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Exponential Coordinate Error (2/3)
•
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Exponential Coordinate Error (3/3)
•
•
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More Discussions

•
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More Discussions

•
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