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Motivating Example I

• Consider pendulum dynamics equation:
θ̈ = −a sin(θ)− bθ̇ + cτ

- a = g/l, b = k/m, c = 1/ml2 are constants
- τ > 0 is the applied torque
- State-space form:

⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = −a sin(x1)− bx2 + cu

y = x1

- Objective: regulate y(t) to zero

M

θ

Torque

Gravity
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Motivating Example I

• Design linear control

• Overall stabilizing controller:
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Motivating Example II (1/3)

Consider the following nonlinear system:⎧⎪⎨
⎪⎩
ẋ1 = ax3

2 + u

ẋ2 = u

y = x1

(1)

• Objective: make y(t) track yd(t), i.e., make e(t) = y(t)− yd(t) go to zero.

• To reveal direct relationship between y and u, taking derivative of y
ẏ = x3

2 + u.

• Above equation indicates that one can directly control the derivative of y,
and hence the derivative of e.
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Motivating Example II (2/3)
• We have e → 0, i.e., y(t) = x1(t) → yd(t). What about x2(t)?

• Plugging in, we have

ẋ2 + ax3
2 = ẏd − e(t) (2)

• μ makes e(t) → 0, but it may result in diverging x2.
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Motivating Example II (3/3)
• System (1) has dimension n = 2.

- Linearized input/output relation: ė+ e = 0. The order of this I/O dynamics is
called the relative degree (i.e. here r = 1)

- The remaining dynamics (2) has dimension: n− r = 1. This dynamics is called
internal dynamics
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Summary Based on Motivating Examples

•
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Relative Degree

• Consider single-input-single-output control affine system:{
ẋ = f(x) + g(x)u

y = h(x)
(3)

• Relative Degree: Roughly speaking, relative degree is the number of times
we need to take the time derivatives of the output to see the input:

- ẏ = ∂h
∂x

f(x) + ∂h
∂x

g(x)u � Lfh(x) + Lgh(x)u

- If Lgh(x) �= 0 in an open set containing the equilibrium, then relative degree is 1.
If not, continue taking derivative:

ÿ = L2
fh(x) + LgLfh(x)u

- If LgLfh(x) �= 0, then relative degree is 2, otherwise continue ...
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Relative Degree (Continued)

• Definition (Relative Degree): System (3) has relative degree r if, in a
neighborhood of the equilibrium,

LgL
i−1
f h(x) = 0, i = 1, . . . , r − 1, and LgL

r−1
f �= 0

• Example 1: ẋ1 = x2, ẋ2 = −x3
1 + u, y = x1
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Relative Degree (Continued)

• Example 2: ẋ = Ax+Bu, y = Cx

• Example 3: ẋ1 = x2 + x3
3, ẋ2 = x3, ẋ3 = u, y = x1
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Input-Output Linearization

If system (3) has a well defined relative degree r ≥ n, then it is input-output
linearizable

• y(r) = Lr
fh(x) + LgL

r−1
f h(x)u

• Apply feedback: u = 1
LgL

r−1
f h(x)

(
−Lr

fh(x) + v
)
⇒y(r) = v

• Integrator chain: ⎧⎪⎪⎨
⎪⎪⎩
ζ̇1 = ζ2
...

ζ̇r = v

(4)

where ζ1 = y = h(x), ζ2 = ẏ = Lfh(x), . . . , ζr = y(r) = Lr−1
f h(x).
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Input-Output Linearization: Normal Form (1/2)

• Block diagram of I/O Linearized control system:

• Sys (4) if r-dim, if r < n, then there will be remaining internal dynamics

• Let z ∈ R
n−r be the state variable of the internal dynamics, feedback

linearization is essentially representing the dynamics of x using new
coordinate (z, ζ), which is function of x:

(z(x), ζ(x)) = φ(x)

• For valid state transformation, φ and φ−1 need to be continuously
differentiable, such a φ mapping is called a diffeomorphism

I/O Linearization Advanced Control for Robotics Wei Zhang (SUSTech) 15 / 24



Input-Output Linearization: Normal Form (2/2)
• Theorem: Suppose system (3) has a well-defined relative degree r ≤ n, then

there exists a diffeomorphism φ(x) = (z, ζ) with z ∈ R
n−r and ζ ∈ R

r, that
transforms the system to the form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż = f0(z, ζ)

ζ̇1 = ζ2
...

ζ̇r = β(z, ζ) + α(z, ζ)u

y = ζ1

• ζ = [h(x) Lfh(x) · · · Lr−1
f h(x)]T

• z1, . . . , zn−r are n− r independent variables such that ż does not contain u

• φ can be found by solving a set of PDEs (hard in general).
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Internal Dynamics and Zero Dynamics

• Dynamics ż = f0(z, ζ) is (n− r)-dimensional and is called the internal
dynamics

• Internal dynamics should be viewed as dynamics of the internal state z with ζ
being an external input

• Typically, we want ζ → 0, thus it is important to study dynamics

ż = f0(z, 0)

which is called the zero dynamics

• If the origin of the zero dynamics is asymp. stable ⇒ minimum-phase
system; otherwise ⇒ nonminimum phase

h(x) = 0

minimum phase nonminimum phase
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I/O Linearization in Normal Form

• I/O Linearizing controller in new coordinate:{
u = 1

α(z,ζ) (−β(z, ζ) + v)

v = −k1ζ1 − · · · − krζr
(5)

• Theorem If z = 0 is locally expeontially stable for ż = f0(z, 0), then
controller (5) locally exponentially stabilizes x = 0 for system (3)

• Theorem Global asymp stability can be guaranteed if ż = f0(z, ζ) is ISS
with respect to input ζ
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Feedback Linearization for Tracking

• Suppose we want the output y of sys (3) to track a reference signal yd(t)

• Choose v as
v = −k1(ζ1 − yd)− · · · − kr(ζr − ẏ

(r)
d )

• Let ei = ζi − y
(i)
d , i = 0, . . . r − 1

• Then we know e(t) → 0, i.e., ‖y(t)− yd(t)‖ → 0

• If all derivatives of yd are bounded, then ζ is bounded. If zero dynamics
ż = f0(z, ζ) is ISS (Input-to-State Stable), then z(t) is also bounded. All
internal signals are bounded.
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More About Zero Dynamics

• Set y = 0, ẏ = 0, . . . , y(r−1) = 0 and substitute (4) with v = 0, i.e.,

u∗ =
1

LgL
r−1
f h(x)

(−Lr
fh(x)

)
• The remaining dynamical equations describe the zero dynamics
• Example: Cart Pole⎧⎪⎨

⎪⎩
ÿ = 1

M
m

+sin2(θ)

(
u
m

+ θ̇2l sin(θ)− g sin(θ) cos(θ)
)

θ̈ = 1

l(M
m

+sin2(θ))

(
− u

m
cos(θ)− θ̇2l cos(θ) sin(θ) + M+m

m
g sin(θ)

)

θ �

y : output

u

m

M
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Summary of Input-Output Linearization

• Differentiate the output y until the input u appears

• Choose u to cancel the nonlinearities and guarantee tracking convergence

• Study the stability of the internal dynamics

- Minimum-phase

- Non-minimum-phase
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More Discussions

•
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