MEE5114 Advanced Control for Robotics

Lecture 12: Basics of Feedback Linearization

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Motivating Examples

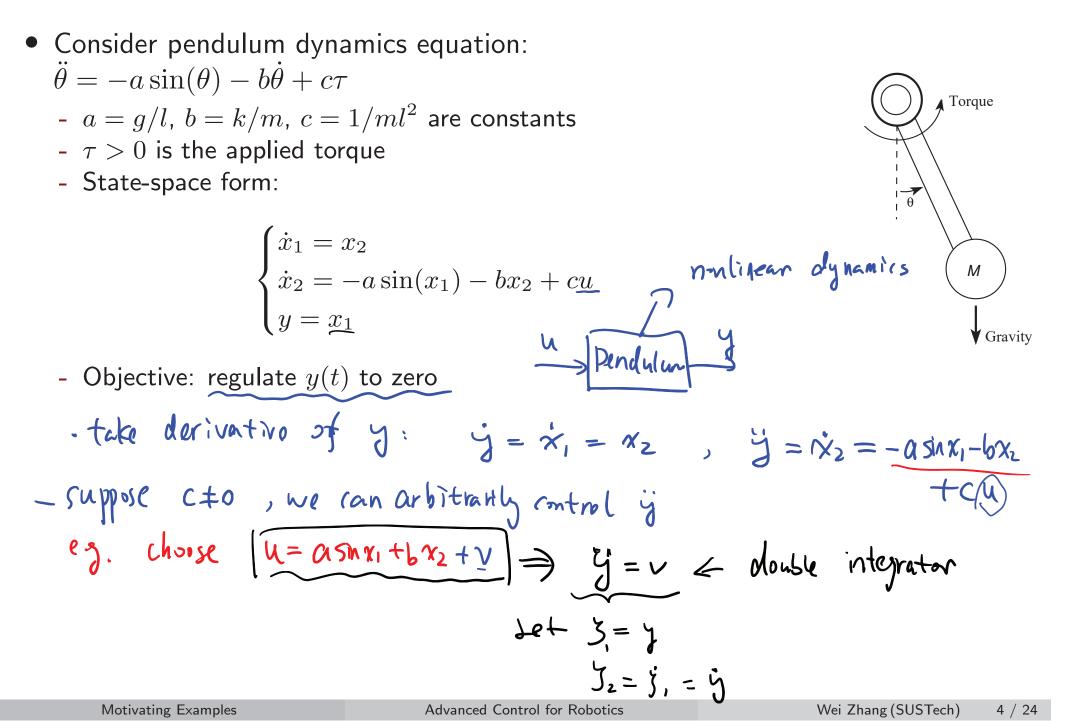
• Input-Output Linearization

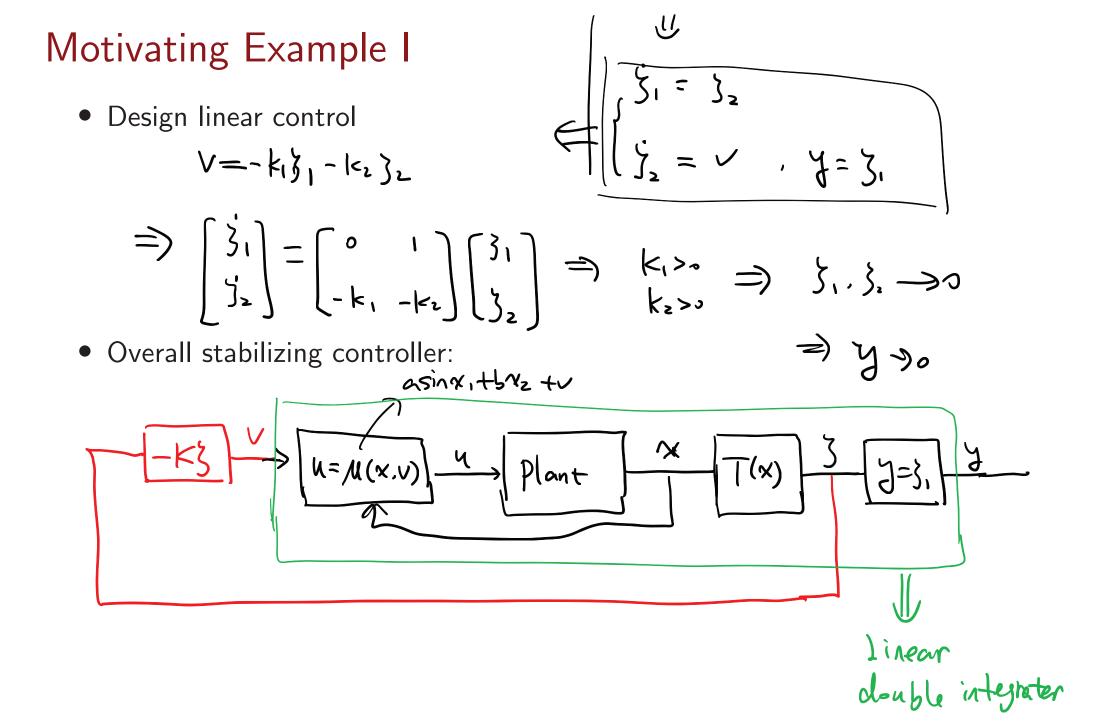
Outline

• Motivating Examples

• Input-Output Linearization

Motivating Example I

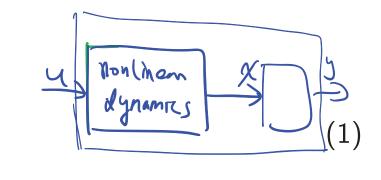




Motivating Example II (1/3)

Consider the following nonlinear system:

$$\begin{cases} \dot{x}_1 = ax_2^3 + u\\ \dot{x}_2 = u\\ y = x_1 \end{cases}$$



- Objective: make y(t) track $y_d(t)$, i.e., make $e(t) = y(t) y_d(t)$ go to zero.
- To reveal direct relationship between y and u, taking derivative of y $\dot{y} = x_2^3 + u$.
- Above equation indicates that one can directly control the derivative of y, and hence the derivative of e.

choose:
$$Y = \mathcal{M}(x, v) = -x_2^3 + v \Rightarrow \dot{y} = v$$

choose
$$V = \mathcal{F} \dot{\mathcal{J}}_{\mathcal{A}} - \mathcal{K}(\mathcal{J} - \mathcal{J}_{\mathcal{A}})$$

=) $\dot{\mathcal{J}}_{\mathcal{A}} - \mathcal{K}(\mathcal{J} - \mathcal{J}_{\mathcal{A}}) = 0$

Advanced Control for Robotics

Motivating Example II (2/3) $\Rightarrow \dot{e} + k e = o$

• We have $e \to 0$, i.e., $y(t) = x_1(t) \to y_d(t)$. What about $\underline{x_2(t)}$?

• Plugging in, we have

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$$
\left)

\left)

(2)

• μ makes $e(t) \rightarrow 0$, but it may result in diverging x_2 .

Motivating Example II (3/3)

- System (1) has dimension n = 2.
 - Linearized input/output relation: $\dot{e} + e = 0$. The order of this I/O dynamics is called the *relative degree (i.e. here* r = 1)

- The remaining dynamics (2) has dimension: n - r = 1. This dynamics is called internal dynamics

Summary Based on Motivating Examples

•

Outline

• Motivating Examples

• Input-Output Linearization

Relative Degree

• Consider single-input-single-output control affine system:

$$\begin{cases} \dot{x} = f(x) + g(x)u \\ y = h(x) \end{cases} \text{ (STSS)} \qquad (3)$$
No direct jeed through Input offine

• **Relative Degree**: Roughly speaking, relative degree is the number of times we need to take the time derivatives of the output to see the input:

- If $L_g h(x) \neq 0$ in an open set containing the equilibrium, then relative degree is 1. If not, continue taking derivative:

$$\ddot{y} = L_f^2 h(x) + L_g L_f h(x) u$$

- If $L_g L_f h(x) \neq 0$, then relative degree is 2, otherwise continue ...

Relative Degree (Continued)

• **Definition (Relative Degree):** System (3) has relative degree *r* if, in a neighborhood of the equilibrium,

$$L_g L_f^{i-1} h(x) = 0, i = 1, \dots, r-1, \text{ and } L_g L_f^{r-1} \neq 0$$

• Example 1: $\dot{x}_1 = x_2, \ \dot{x}_2 = -x_1^3 + u, \ y = x_1$ $\dot{j} = \dot{x}_1 = x_2 + 0.4$ $\dot{y} = \dot{x}_2 = -x_1^3 + y_1$ =) R0 = 2Let u= X13+V => y= v Let $y_1 = y_1 = y_1$ $y_2 = y_1$ $y_1 = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_2 \\ y_1 \end{bmatrix}$ $y_1 = y_1$ $y_2 = y_1$ double integrater

Relative Degree (Continued)

• Example 2:
$$\dot{x} = Ax + Bu$$
, $y = Cx$

I/O Linearization

66

Advanced Control for Robotics

Wei Zhang (SUSTech) 13 / 24

Input-Output Linearization

If system (3) has a well defined relative degree $r \ge n$, then it is input-output linearizable

•
$$y^{(r)} = L_f^r h(x) + L_g L_f^{r-1} h(x) u$$

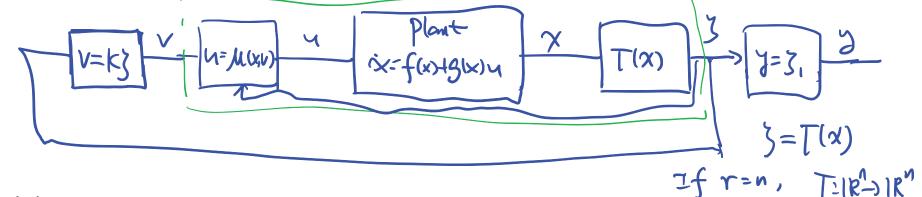
+ • Solution like around some point \hat{x}
• Apply feedback: $u = \frac{1}{L_g L_f^{r-1} h(x)} \left(-L_f^r h(x) + v \right) \Rightarrow y^{(r)} = v$
U directly control $y^{(r)}$

• Integrator chain:

If
$$Y \ge n$$
. System (fully)
Input - Outgour linearizable
$$\begin{cases} \dot{\zeta}_1 = \zeta_2 \\ \vdots \\ \dot{\zeta}_r = v \end{cases}$$
(4)
$$\frac{\dot{\zeta}_r = v}{\dot{\zeta}_r = v}$$
where $\zeta_1 = y = h(x), \ \zeta_2 = \dot{y} = L_f h(x), \ \dots, \ \zeta_r = y^{(r)} = L_f^{r-1} h(x).$

Input-Output Linearization: Normal Form (1/2)

• Block diagram of I/O Linearized control system:



- Sys (4) if r-dim, if r < n, then there will be remaining internal dynamics
- Let $z \in \mathbb{R}^{n-r}$ be the state variable of the internal dynamics, feedback linearization is essentially representing the dynamics of x using new coordinate (z, ζ) , which is function of x:

$$(z(x), \zeta(x)) = \phi(x)$$

• For valid state transformation, ϕ and ϕ^{-1} need to be continuously differentiable, such a ϕ mapping is called a diffeomorphism

Input-Output Linearization: Normal Form (2/2)

• **Theorem**: Suppose system (3) has a well-defined relative degree $r \le n$, then there exists a diffeomorphism $\phi(x) = (z, \zeta)$ with $z \in \mathbb{R}^{n-r}$ and $\zeta \in \mathbb{R}^r$, that transforms the system to the form:

$$\begin{cases} \dot{z} = f_0(z, \zeta) \\ \dot{\zeta}_1 = \zeta_2 \\ \vdots \\ \dot{\zeta}_r = \beta(z, \zeta) + \alpha(z, \zeta)u \\ y = \zeta_1 \end{cases}$$

•
$$\zeta = [h(x) \quad L_f h(x) \quad \cdots \quad L_f^{r-1} h(x)]^T$$

- z_1, \ldots, z_{n-r} are n-r independent variables such that \dot{z} does not contain u
- ϕ can be found by solving a set of PDEs (hard in general).

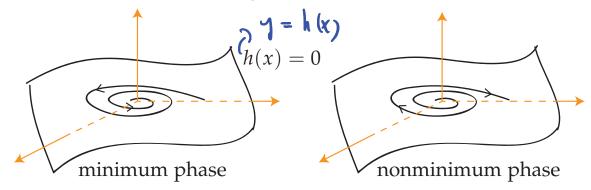
Internal Dynamics and Zero Dynamics

- Dynamics $\dot{z} = \oint_0(z,\zeta)$ is (n-r)-dimensional and is called the internal dynamics integrator chain
- Internal dynamics should be viewed as dynamics of the internal state z with ζ being an external input
- Typically, we want $\zeta \to 0$, thus it is important to study dynamics

$$\dot{z} = f_0(z,0)$$

which is called the **zero dynamics**

- $j_{1}=0, j_{2}=j_{2}=0$ $\Rightarrow y_{2}=0$
- If the origin of the zero dynamics is asymp. stable \Rightarrow minimum-phase system; otherwise \Rightarrow nonminimum phase



I/O Linearization in Normal Form

• I/O Linearizing controller in new coordinate:

$$\begin{cases} u = \frac{1}{\alpha(z,\zeta)} \left(-\beta(z,\zeta) + v \right) \\ v = -k_1 \zeta_1 - \dots - k_r \zeta_r \end{cases}$$
(5)

• Theorem If z = 0 is locally expecntially stable for $\dot{z} = f_0(z, 0)$, then controller (5) locally exponentially stabilizes x = 0 for system (3) Roughly speeking, we can ignore the internal dynamics under this and itim

• Theorem Global asymp stability can be guaranteed if $\dot{z} = f_0(z, \zeta)$ is ISS with respect to input ζ x = f(x, n) is ISS ISS

$$if ||x(t)|| \le \frac{e}{e} ||x(t)|| + \frac{1}{2} ||x(t)|| = \frac{1}{2} ||x(t)|| + \frac{1}{2} ||x(t)||$$

Feedback Linearization for Tracking

- Suppose we want the output y of sys (3) to track a reference signal $y_d(t)$
- Choose v as

$$v = -k_1(\zeta_1 - y_d) - \dots - k_r(\zeta_r - \dot{y}_d^{(r)})$$

• Let
$$e_i = \zeta_i - y_d^{(i)}$$
, $i = 0, \dots r - 1$

- Then we know $e(t) \rightarrow 0$, i.e., $||y(t) y_d(t)|| \rightarrow 0$
- If all derivatives of y_d are bounded, then ζ is bounded. If zero dynamics $\dot{z} = f_0(z, \zeta)$ is ISS (Input-to-State Stable), then z(t) is also bounded. All internal signals are bounded.

More About Zero Dynamics

• Set
$$y = 0, \dot{y} = 0, \dots, y^{(r-1)} = 0$$
 and substitute (4) with $v = 0$, i.e.,
$$u^* = \frac{1}{L_g L_f^{r-1} h(x)} \left(-L_f^r h(x) \right)$$

• The remaining dynamical equations describe the zero dynamics

• Example: Cart Pole

$$\begin{cases} \ddot{y} = \frac{1}{\frac{M}{m} + \sin^{2}(\theta)} \left(\frac{\dot{w}}{m} + \dot{\theta}^{2} l \sin(\theta) - g \sin(\theta) \cos(\theta) \right) \\ \ddot{\theta} = \frac{1}{l(\frac{M}{m} + \sin^{2}(\theta))} \left(-\frac{u}{m} \cos(\theta) - \dot{\theta}^{2} l \cos(\theta) \sin(\theta) + \frac{M+m}{m} g \sin(\theta) \right) \\ \text{State space: Advin: Ni=Y, X=Y, X=0, X=0} \\ \text{Tynamics: } \dot{y} = N_{Z}, \quad \ddot{y} = \sqrt{N_{Z} \cdot \theta}, \quad X_{Z}=0, \quad X_{Z}=0 \\ \text{Tynamics: } \dot{y} = N_{Z}, \quad \ddot{y} = \sqrt{N_{Z} \cdot \theta}, \quad X_{Z}=0, \quad X_{Z}=0 \\ \text{Tynamics: } \dot{y} = N_{Z}, \quad \ddot{y} = \sqrt{N_{Z} \cdot \theta}, \quad X_{Z}=0, \quad X_{Z}=0,$$

Summary of Input-Output Linearization

• Differentiate the output y until the input u appears

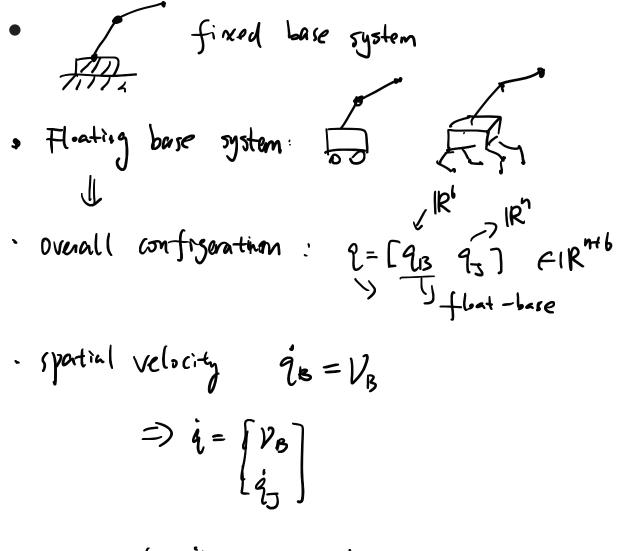
• Choose u to cancel the nonlinearities and guarantee tracking convergence

• Study the stability of the internal dynamics

- Minimum-phase

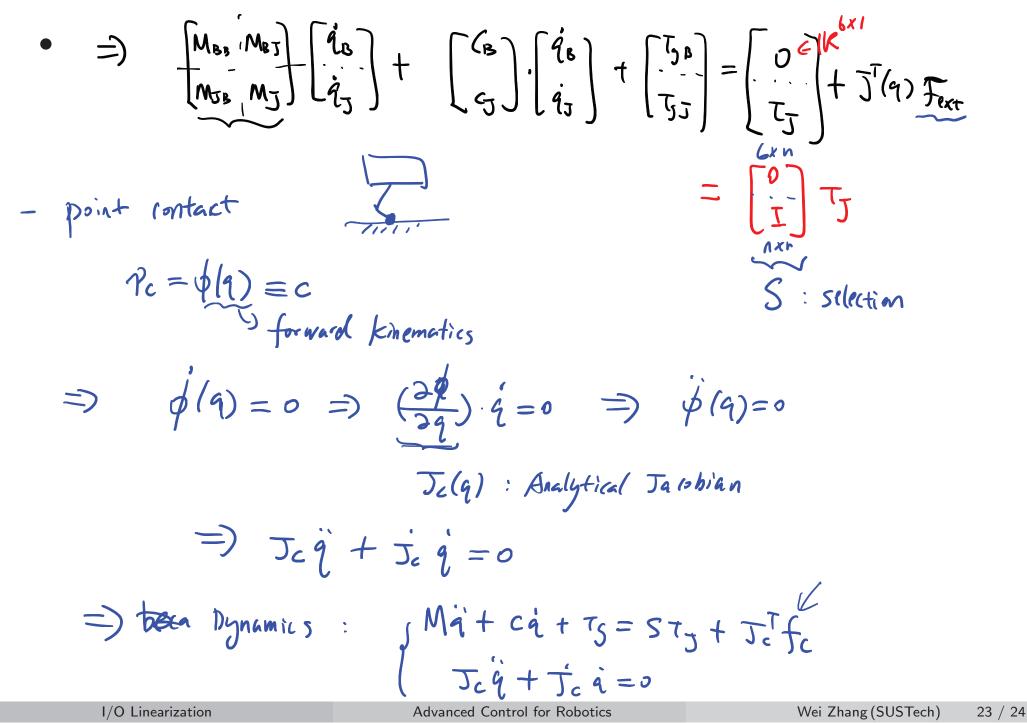
- Non-minimum-phase

More Discussions



$$=) \qquad \mathsf{M}(q)\dot{q} + ((q,\dot{q})\dot{q} + \tau_{g} = \tau + 5^{\mathsf{T}}f_{\mathsf{rxt}}$$

More Discussions



More Discussions

=)
$$f_c = (J_c^T J^T M J_c^{-1} (- J_c^T \dot{q} - J_c M^{-1} (ST_J - c \dot{q} - T_G))$$

($J_c M^{-1} J_c^T J_c^{-1}$ Contact inertia