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Motivating Example |

® Consider pendulum dynamics equation:
0 = —asin(f) — b + cr

a=g/l,b=k/m, c=1/ml* are constants
7 > 0 is the applied torque
State-space form:
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Motivating Example |

® Design linear control

V=- kl3| = kl};_

® Qverall stabilizing controller:
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Motivating Example I (1/3)
Consider the following nonlinear system:
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Yy =1

® Objective: make y(t) track yq(t), i.e., make e(t) = y(t) — ya(t) go to zero.

® To reveal direct relationship between y and u, taking derivative of y
C .3
Yy = x5 + U

® Above equation indicates that one can directly control the derivative of y,
and hence the derivative of e.
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Motivating Example Il (2/3) =2 ¢ 4 Lo -0

® We have e — 0, i.e., y(t) = z1(t) — ya(t). What about x2(t)?

——

S UE )= ~0G 4 Y - ke
® Plugging in, we have /5

Ty + axy =Yg — e(t) (2)
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® ;1 makes e(t) — 0, but it may result in diverging x-.
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Motivating Example Il (3/3)

® System (1) has dimension n = 2.

- Linearized input/output relation: é + e = 0. The order of this I/O dynamics is
called the relative degree (i.e. herer = 1)

- The remaining dynamics (2) has dimension: n —r = 1. This dynamics is called
internal dynamics
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Summary Based on Motivating Examples
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Relative Degree

® Consider single-input-single-output control affine system:
z,n\/:]\(—:afw* §i le ow‘ﬁ?h/(’
t=flz)+ ( ) (¢T$9 (3)
y = h(z) IR

No o‘\’ed- «d-u,m {M"- kﬂ“c
® Relative Degree: Roughly speakmg relgtlve degree is the number of times

we need to take the time derivatives of the output to see the input:
i =@ @ (@ £ Lits) +Lohia) fis
3 |
Sk _ & *)?>
>R [z}' 'gﬁ -F,,tx)
- If Lyh(x) # 0 in an open set contamm?‘the equilibrium, then relative degree is 1.
If not, continue taking derivative:

ij = L3h(z) + Ly Lyh(z)u

- If LyLyh(x) # 0, then relative degree is 2, otherwise continue ...
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Relative Degree (Continued)

® Definition (Relative Degree): System (3) has relative degree r if, in a
neighborhood of the equilibrium,

LyL7 'h(z) =0,i=1,...,r =1, and LyL7™" #0

® Example 1: 21 = x9, 29 = —:c:i’ +u, y = xq
N ————
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Relative Degree (Continued)

® Example 2: + = Ax + Bu, y=Cx

® Example 3: 1 = x2 + :L‘%, To = T3, T3 = U, Y = T
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Input-Output Linearization

If system (3) has a well defined relative degree r > n, then it is input-output
linearizable S IR

T— /
° y('f“) — L"J}h(a:) + LgLf 1h(x)u
W\ SlOLA“j

0 e l-(all'j Aysund s> T’l“*_ ~
e Apply feedback: u = 1 (—L;h(aﬁ) + v) =y(") =y

LyL" " "h(x)
f & o, (h
wc“g Cntrol

® |ntegrator chain:

T& Y>n <5s{4~ (‘}\.Uj) 'él = (5
IAPW\— Ou&ywl'mmnuble Q: (4)
- y<n, yo\H.‘a“? 1_/0 ineotine (=
where (; =y = h(z), (o =9 = L¢h(z), ..., =y = L;_lh(x)_
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Input-Output Linearization: Normal Form (1/2)
\4 Inveyossr hain

® Block diagram of |/O Linearized control system:

) lowt
V.:|(3 v )Mz JOsv) - P(,o_; ¢ X T(’X) 3 ‘J Z
\A

3 ren, Tne L3R
® Sys (4) if r-dim, if r < n, then there will be remaining internal dynamics
AM

® [et @E R™™" be the state variable of the internal dynamics, feedback
linearization is essentially representing the dynamics of = using new
coordinate (z, (), which is function of x:

VARY
R ‘ (2(x),¢(x)) = &(x)

® For valid state transformation, ¢ and ¢~ ! need to be continuously
differentiable, such a ¢ mapping is called a diffeomorphism
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Input-Output Linearization: Normal Form (2/2)

w

® Theorem: Suppose system (3) has a well-defined relative degree r < n, then
there exists a diffeomorphism ¢(z) = (z,() with z € R"™" and { € R", that
transforms the system to the form: _

— IR
(ZéfO(Za C)

& =G

Yu

ér — B(Za C) T O‘(Za C)u
Y= Q1

® (=I[h(x) Lgh(z) --- Ly 'hx)]"
® 21,...,%2n—, are n — r independent variables such that z does not contain u

® ¢ can be found by solving a set of PDEs (hard in general).

e
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Internal Dynamics and Zero Dynamics

® Dynamics 2 =\fo(z,())is (n — 1) dlmen5|onal and is called the internal

dynamics \
y ) _D\ m_\_ (jw:‘—"“ C‘p‘ln

® |nternal dynamics should be viewed as dynamlcs of the internal state z with (

being an external input

® Typically, we want ¢ — 0, thus it is important to study dynamics

Z = fo(Z, O)

which is called the zero dynamics SF °, \5?31‘;’# . = Y}=zo

M

® |[f the origin of the zero dynamics is asymp. stable = minimum-phase
system; otherwise = nonminimum phase

h
P“] )
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\ \ )

minimum phase nonminimum phase
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|/O Linearization in Normal Form

® |/O Linearizing controller in new coordinate:

u= e (82,0 +v)
v=—ki(1— - — ks

® Theorem If z = 0 is locally expeontially stable for Z = fy(z,0), then
controller (5) locally exponentially stabilizes x = 0 for system (3)
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Feedback Linearization for Tracking

® Suppose we want the output y of sys (3) to track a reference signal y4(¢)

® Choose v as
U = _kl(C1 — yd) — kr(Cr — yc(ir))

® lete;, =( — yd ,1=0,...r—1
® Then we know e(t) — 0, i.e., ||y(t) — ya(t)|| — O

® |f all derivatives of y,; are bounded, then ( is bounded. If zero dynamics
2 = fo(z,() is ISS (Input-to-State Stable), then z(¢) is also bounded. All
internal signals are bounded.

I/O Linearization Advanced Control for Robotics Wei Zhang (SUSTech) 19 / 24



More About Zero Dynamics

® Set y=0,7=0,...,y""Y =0 and substitute (4) with v =0, i.e.,

1

ut — LT (—L%h(z))

® The remaining dynamical equations describe the zero dynamics
® Example: Cart Pole

v %+$n2(e) (%3; 0%1sin(0) — gsin(GQCoswz/)«
) X

> .
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. . . ok (9"’0/ o=0)
Summary of Input-Output Linearization

® Differentiate the output y until the input u appears

® Choose u to cancel the nonlinearities and guarantee tracking convergence

® Study the stability of the internal dynamics

- Minimum-phase

- Non-minimum-phase
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More Discussions
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More Discussions
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