MEE5114 Advanced Control for Robotics

Lecture 2: Rigid Body Configuration and Velocity

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

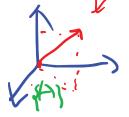
• Rigid Body Velocity (Twist)

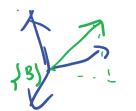
• Geometric Aspect of Twist: Screw Motion

Free Vector

• Free Vector: geometric quantity with length and direction

• Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.





• v denotes the physical quantity while ${}^{A}v$ denote its coordinate wrt frame {A}.

Point

• **Point**: *p* denotes a point in the physical space

• A point $p\ {\rm can}\ {\rm be}\ {\rm represented}\ {\rm by}\ {\rm a}\ {\rm vector}\ {\rm from}\ {\rm frame}\ {\rm origin}\ {\rm to}\ p$

• ${}^{\!\!\!A}p$ denotes the coordinate of a point p wrt frame $\{\mathsf{A}\}$

• When left-superscript is not present, it means the physical vector itself or the coordinate of the vector where reference frame is clear from the context. thick in 'coordinate - free' way whenever possible

6.5

 $V_{3} = V_{1} - V_{2} \in \text{(sordinate free})$ $AV_{2} = AV_{1} - AV_{2} \quad BV_{2} = BV_{1} - BV_{2}$

Cross Product

Properties:

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$a \times b = \begin{bmatrix} a_{2}b_{3} - a_{3}b_{2} \\ a_{3}b_{1} - a_{1}b_{3} \\ a_{1}b_{2} - a_{2}b_{1} \end{bmatrix}$$
(1)

$$\bullet \|a \times b\| = \|a\| \|b\| \sin(\theta)$$

$$\bullet a \times b = -b \times a$$

$$\bullet a \times a = 0$$

$$\downarrow \text{ linear velocity}$$

$$\bigvee_{p = w \times r_{p}}$$

$$\bigvee_{p = w \times r_{p}}$$

$$\bigvee_{p = r_{p} \times f}$$

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$[a] \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \checkmark$$
(2)

•
$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \leftrightarrow [a]$$
 $A = \begin{bmatrix} a_1 \\ a_2 \\ b \end{bmatrix}$, $b = \begin{bmatrix} a_1 \\ b \\ b \end{bmatrix}$

- $[a] = -[a]^T$ (called skew symmetric)
- $[a][b] [b][a] = [a \times b]$ (Jacobi's identity)

$$a \times b = (a) \cdot b$$

$$= \begin{bmatrix} 0 & 73 \\ 3 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin
 - $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal
 - $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$
- **Rotation Matrix**: specifies orientation of one frame relative to another

$${}^{A}R_{B} \stackrel{<}{=} \begin{bmatrix} {}^{A}\hat{x}_{B} & {}^{A}\hat{y}_{B} & {}^{A}\hat{z}_{B} \end{bmatrix}$$

$$\stackrel{\stackrel{<}{=}}{\xrightarrow{}} \begin{bmatrix} (\sigma_{3} \circ - \varsigma_{h_{0}} \circ \sigma) \\ \varsigma_{h_{0}} & \varsigma_{h_{0}} & \varsigma_{h_{0}} & \sigma \\ \varsigma_{h_{0}} & \varsigma_{h_{0}} & \varsigma_{h_{0}} & \sigma \\ \sigma & \sigma & 1 \end{bmatrix} \xrightarrow{} (1)$$

Rigid Body Configuration

Advanced Control for Robotics

Wei Zhang (SUS⁻

Special Orthogonal Group

• Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as

 $SO(n) = \{ R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1 \}$

- SO(n) is a group. We are primarily interested in SO(3) and SO(2), rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- **Group** is a set G, together with an operation •, satisfying the following group axioms:
 - Closure: $a \in G, b \in G \Rightarrow a \bullet b \in G$
 - Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c), \forall a, b, c \in G$
 - Identity element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$.
 - Inverse element: For each a ∈ G, there is a b ∈ G such that a b = b a = e, where e is the identity element.

Use of Rotation Matrix By definition AR. • Representing an orientation of frame (B) relative to (A)

Given a vector
$$Y$$
, it's coordinate in $\{A\}$,
• Changing the reference frame: $\{B\}$ are veloced by
 $AV = \frac{hR_B}{V}$ same
the vector

• Rotating a vector or a frame (to be discussed more later) **Theorem (Euler)**: Any orientation $R \in SO(3)$ is equivalent to a rotation about a fixed axis $\hat{\omega} \in \mathbb{R}^3$ through an angle $\theta \in [0, 2\pi)$ $R = \operatorname{Rot}(\hat{\omega}, \theta)$ = $(1, 2\pi)$ $R = \operatorname{Rot}(\hat{\omega}, \theta)$

- 'coordinate free" proof
$$|AV = PR_B B_V$$

rame physical vector V
 $\begin{cases} Its coordinate in {A} frame T3 $AV = \begin{bmatrix} a'_1 \\ a_2 \\ a_3 \end{bmatrix}$ a
 $\Rightarrow V = d_1 \hat{X}_A + d_2 \hat{S}_B + d_3 \hat{Z}_B$
 $Its coordinate in {B} frame is $BV = \begin{bmatrix} p_1 \\ p_3 \\ p_3 \end{bmatrix}$
 $\Rightarrow V = p_1 \cdot \hat{X}_B + p_2 \hat{Q}_B + p_3 \hat{Z}_B$
 $free "statement" a'_1 \hat{X}_B + d_2 \hat{Y}_A + d_3 \hat{Z}_B = p_1 \cdot \hat{X}_B + p_2 \hat{S}_B + p_3 \hat{Z}_B$
 $i coordinate$
 $free "statement" a'_1 \hat{X}_B + d_2 \hat{Y}_A + d_3 \hat{Z}_A = p_1 \cdot \hat{X}_B + p_2 \hat{S}_B + p_3 \hat{Z}_B$
 $i coordinate$
 $free "statement" a'_1 \hat{X}_B + d_2 \hat{Y}_A + d_3 \hat{X}_A = p_1 \cdot \hat{X}_B + p_2 \cdot \hat{S}_B + p_1 \cdot \hat{S}_B + p_1 \cdot \hat{S}_B$$$

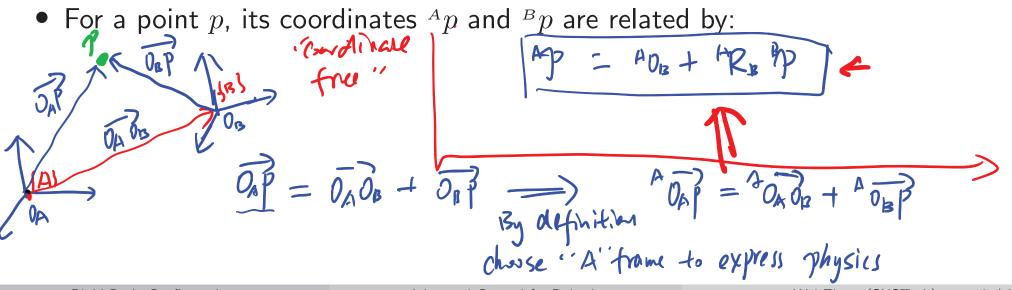
 \Rightarrow $AV = AR_B BV$

Rigid Body Configuration

- Given two coordinate frames {A} and {B}, the configuration of B relative to A is determined by
 - ${}^{A}R_{B}$ and ${}^{A}o_{B}$

• For a (free) vector r, its coordinates ${}^{A}r$ and ${}^{B}r$ are related by:

AY = ARBAY



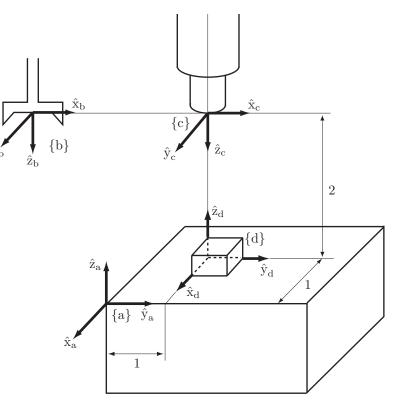
Homogeneous Transformation Matrix

• Homogeneous Transformation Matrix: ${}^{A}T_{B}$ 3×3 3×1

 $Ap = (O_{B} + AR_{D} B) \Leftrightarrow [Ap] \in R^{2} [Ap] \in R^{2} [AR_{R} AO_{B} B] [Bp] [I]$ $=) AT_{B} = \begin{bmatrix} AR_{\bullet} & A_{0B} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4x_{1} & 1x_{3} & 1x_{1} \\ 4x_{4} & 4x_{4} \end{bmatrix}$ omogeneous coordinates: T = (R, p) Homogeneous coordinates: Given a point perk³, its homo coordinate is given by $\widetilde{p} = \begin{bmatrix} p \\ 1 \end{bmatrix}$ For vector V, its homogeneous coordinate is $\widetilde{V} = \begin{bmatrix} V \\ 0 \end{bmatrix}$ $V = P_1 - P_2$, $\mathcal{O} = \widetilde{P_1} - \widetilde{P_2}$ $\Rightarrow \tilde{m} = \tilde{m}_{B} \tilde{m}_{p}$

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $||p_c - p_b|| = 4$



Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/2)

- Consider a rigid body with angular velocity: ω (this is a free vector).
- Suppose the actual rotation axis passes through a point p; Let v_p be the velocity of the point p.

Question: A rigid body contains infinitely many points with different velocities. How to parameterize all of their velocities?

- Consider an arbitrary body-fixed point q (means that the point is rigidly attached to the body, and moves with the body), we have:

$$v_q = v_p + \omega \times (\overrightarrow{pq}) \tag{3}$$

- The velocity of an arbitrary body-fixed point depends only on (ω, v_p, p) and the location of the point q.

Rigid Body Velocity (2/2)

- Fact: The representation form (3) is independent of the reference point p.
- Consider an arbitrary point \underline{r} in space
 - r may not be on the rotation axis
 - r may be a stationary point in space (does not move)
 - Let v_r be the velocity of the body-fixed point currently coincides with r

We still have:
$$v_q = v_r + \omega \times (\overrightarrow{rq})$$

 $V_q = V_p + w \times (\overrightarrow{pq})$, $V_r = V_p + w \times (\overrightarrow{pr})$
 $= V_r - w \times (\overrightarrow{pr}) + w \times (\overrightarrow{pq})$
 $= V_r + w \times (\overrightarrow{pr} - \overrightarrow{pr}) = V_r + w \times \overrightarrow{rq}$

• The body can be regarded as translating with a linear velocity v_r , while rotating with angular velocity ω about an axis passing through r

Rigid Body Velocity: Spatial Velocity (Twist) • Spatial Velocity (Twist): $V_r = (\omega, v_r)$

- - ω : angular velocity
 - $v_{\mathbf{x}}$: velocity of the body-fixed point currently coincides with r
 - For any other body-fixed point q, its velocity is

$$\underbrace{v_q = v_r + \omega \times (\overrightarrow{rq})}$$

- Twist is a "physical" quantity (just like linear or angular velocity)
 - It can be represented in any frame for any chosen reference point r
- A rigid body with $\mathcal{V}_r = (\omega, v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r
 - This is just one way to interpret the motion.

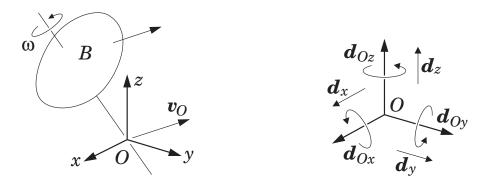
Spatial Velocity Representation in a Reference Frame

• Given frame $\{O\}$ and a spatial velocity \mathcal{V}

- Choose o (the origin of {O}) as the reference point to represent the rigid body velocity
- Coordinates for the \mathcal{V} in $\{O\}$:

 ${}^{O}\mathcal{V}_{o} = ({}^{O}\omega, {}^{O}v_{o})$

• By default, we assume the origin of the frame is used as the reference point: $\mathcal{O}_{\mathcal{V}} = \mathcal{O}_{\mathcal{V}_o}$



Change Reference Frame for Twist axb=-bxa

• Given a twist \mathcal{V} , let ${}^{A}\mathcal{V}$ and ${}^{B}\mathcal{V}$ be their coordinates in frames {A} and {B}

$$A\mathcal{V} = \begin{bmatrix} A_{WC} \\ A_{VAC} \end{bmatrix}, \quad B\mathcal{V} = \begin{bmatrix} B_{W} \\ B_{VBC} \end{bmatrix}_{W}$$
• They are related by $A\mathcal{V} = AX_B^B\mathcal{V}$
• (conditione free " statement

$$A\mathcal{V} = \begin{bmatrix} A_{WC} \\ A_{VAC} \end{bmatrix}, \quad B\mathcal{V} = \begin{bmatrix} B_{W} \\ B_{VBC} \end{bmatrix}_{W}^{B}$$
• They are related by $A\mathcal{V} = AX_B^B\mathcal{V}$
• (conditione free " statement

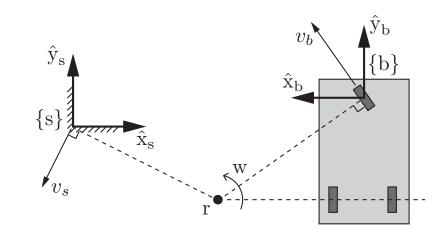
$$A : body-fixed coincides
with Qa} \quad A = \begin{bmatrix} A_{VB} \\ A_{VB} \end{bmatrix}, \quad A : body-fixed velocity
coincides with Qa} \quad A = \begin{bmatrix} A_{VB} \\ A_{VB} \end{bmatrix}, \quad A = \begin{bmatrix} A_{VB} \\ B_{VB} \end{bmatrix}, \quad A$$

Example of Twist I

• Example I: what's the twist of the spinning top? a04.50=2 2 w=Jo rad/s γ c=401 choose $\sqrt[6]{0}'' - \text{frame} : \mathcal{V}_{top} = \begin{bmatrix} 0 \\ 0 \\ 50 \text{ rod/s} \end{bmatrix}$ = $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ Choose of AJ - Frame "Y+0p =

Example of Twist II

• Example II:



 $r_s = (2, -1, 0)$, $r_b = (2, -1.4, 0)$, w=2 rad/s

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Screw Motion: Definition

• Rotating about an axis while also translating along the axis



- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - *h*: **screw pitch** which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

Why Screw Axis is Needed?

- Consider a rigid body with twist $\mathcal{V} = (\omega, v_o)$:
 - Our previous interpretation: translating at linear velocity v_o while rotating with ω along an axis passing through o
 - There are many equivalent interpretations depending on which reference point *o* we choose to represent the spatial velocity
 - If *o* is not on the actual screw axis, the above interpretation does not reflect the actual physical motion (just an equivalent way to represent rigid body velocity).
- Examples:

From Screw Motion to Twist

- Consider a rigid body under a screw motion with screw axis $\{\hat{s}, h, q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .
- Find the twist ${}^{\scriptscriptstyle A}\mathcal{V}=({}^{\scriptscriptstyle A}\omega,{}^{\scriptscriptstyle A}v_{o_A})$

• **Result**: given screw axis $\{\hat{s}, h, q\}$ with rotation speed $\dot{\theta}$, the corresponding twist $\mathcal{V} = (\omega, v)$ is given by

$$\omega = \hat{s}\dot{\theta} \qquad v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta}$$

- The result holds as long as all the vectors and the twist are represented in the same reference frame

From Twist to Screw Motion

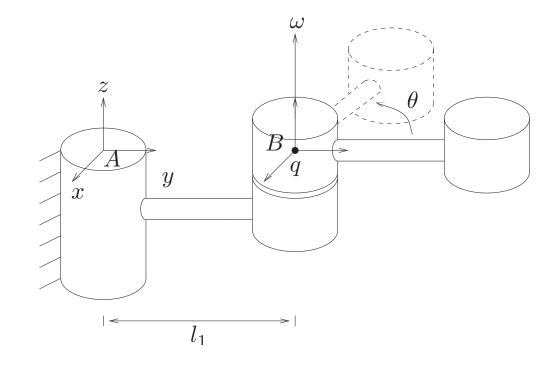
- The converse is true as well: given any twist $\mathcal{V} = (\omega, v)$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\dot{\theta}$
 - If $\omega = 0$, then it is a pure translation $(h = \infty)$

$$\hat{s} = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, q \text{ can be arbitrary}$$

- If
$$\omega \neq 0$$
:
 $\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}$

Examples: Screw Axis and Twist

• What is the twist that corresponds to rotating about \hat{z}_B with $\dot{\theta} = 2$?



• What is the screw axis for twist $\mathcal{V} = (0, 2, 2, 4, 0, 0)$?

Screw Representation of a Twist

- Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) \mathcal{V} can be interpreted in terms of a screw axis $\hat{\mathcal{S}}$ and a velocity $\dot{\theta}$ about the screw axis
- Consider a rigid body motion along a screw axis $\hat{S} = \{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as

$$\mathcal{V}=\hat{\mathcal{S}}\dot{ heta}$$

- In this notation, we think of \hat{S} as the twist associated with a unit speed motion along the screw axis $\{\hat{s}, h, q\}$

More Discussions