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Skew Symmetric Matrices

® Recall that cross product is a special linear transformation.

® For any w € R", there is a matrix [w] € R™*™ such that w X p = |w]p

w1 0 —Wws3 w9
w=| wy | & w=| ws 0 —w
i w3 i i — W9 w1 0 i
e Note that [w] = —[w]! < skew symmetric

® |w] is called a skew-symmetric matrix representation of the vector w
® The set of skew-symmetric matrices in: so(n) SIS cRY" . ST = 6}

P N —

® \We are interested in case n = 2, 3 Q S §O(%)
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Rotation Operation via Differential Equation

® Consider a point initially located at pg at time t =0

AN—

® Rotate the point with unit angular velocity w. Assuming the rotation axis
passing through the origin, the motion is described by

A
7 A () =@ x p(t) = [@]p(t), with p(0) = po (1)
ey (ineor op Zecall: (X =B, Xloz P,
\/gtoc;t‘? | = XH)= eAt >
> 4l €wme Z/u 7 ’

4 ( l@# PeOI= %), /_\_6 (@J
® This is a linear ODE with solution: p(t) = el“ltp,

A

® After t = 0, the point has been rotated by 6 degree. Note p(f0) = el“fp,

W’M

® Rot(w,0) £ el®)? can be viewed as a rotation operator that rotates a point

P )

about w through 6 degree
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Rotation Matrix as a Rotation Oper?tor (1/2)
Sol)

X ® Every rotation matrix R can be written as I = Rot(w, 0)
"~ represents a rotation operation about w by 6.

Sn )

s, [ww

e, it
M

® \We have seen how to use R to represent frame orientation and change of
coordinate between different frames. They are quite different from the

operator interpretation of R.
Q’ (9 o
o 0 —
[D \ o J

® To apply the rotation operation, all the vectors/matrices have to be
expressed in the same reference frame (this is clear from Eq (1))
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verator (2/2)

Rotation Matrix as a Rotation O
1 0 0 |
® For example, assume R= | 0 0 —1 | = Rot(x;7/2)
001 0
® (Consider a relation ¢ = Rp: . e o
- Change reference frame interpretation : 1= ") = [° > - } [;J
(\ - é-y

:FY‘::‘(S - PR -.-\ zél;en‘tﬁ.\m .)‘f (RY relhive 4. JAY |
f - Thn: P ard 4 ary Coo i accke, ""““’" SR E"\"L“' " {QS)fAB

oné

T*_ Rotation operator interpretation:
- Poard 4 are e Cooduatty of ~Hwo prity
in the sam¢ ’f?ﬂw Azi/’é p(:2) Y
é+0m

® Consider the frame operation:
- Change of reference frame:Rp = RRa bad wteton

— Howp one "‘fmme Objcd' ",owu/( ~two W'J‘Ptnce ‘ﬁfamg
€7 Premg abjrcl: {AY, orimtebn W Sy O, Ry => “Fa= R "RA

- Rotating a frame: Ry = RRa
—twy frame ohjects AL, (A7) N yotete- °’)”""h\°“
/- - 9 - R 0
- one vefrenct frame. Ry= R Ry & wovp spafrtly, "Re= R Rg
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Rotation Operation in Different Frames (1/2)
cominee e notition

® Consider two fra,Zues {A} and {B}, the actual numerical values of the
operator Rot(w, §) depend on both the reference frame to represent @ and
the reference frame to represent the operator itself.

® Consider a rotation axis @ (coordinate free vector), with {A}-frame
coordinate 4@ and {B}-frame coordinate Zw. We know

AN

AQ :BRABCU

® Let PRot(?w, ) and “Rot (4w, #) be the two rotation matrices, representing
the same rotation operation Rot(w, #) in frames {A} and {B}.

the 5o phy ¢l
Pt 1hon
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Rotation Operation in Different Frames %252)

® \We have the relation: |SRQ A\Qn = 1 (p’ E,t\\"
/,@ A
ARot (A& é =*RpPRot(Pw, 0 BR—W ="“Rp
- A hww'\ot\'- "l'bvw Y°‘~~Hs P —> ‘/\1_/-—- )
| = i (.0
| £t ) CL,{ Y(AS . P ( > (‘))
o * ~rome

% jo\Mﬁ‘»(/) - —f» m? aclR, clwose?Bb

L= T eAT-J
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Rigid Transformation via Differential Equation (1/3)

® Recall: Every R € SO(3) can be viewed as the state transition matrix
associated with the rotation ODE(1). It maps the initial position to the
current position (after the rotation motion)

- p(0) = Rot(w, 0)po viewed as a solution to p(t) = [W]|p(t) with p(0) = po at
t=20.

- The above relation requires that the rotation axis passes through the origin.

® \We can obtain similar ODE characterization for T' € SE(3), which will lead
to exponential coordinate of SE(3) SRCx ( Fu clodekn @,9‘,7;
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Rigid Transformation via Differential Equation (2/3)

® Recall: Theorem (Chasles): Every rigid body motion can be realized by a

screw motion .
?5——[& b, 7)

® Consider a point p undergoes a screw motion with screw axis & and unit
speed (@ = 1). Let the corresponding twist be V =& = (w,v). The motion
can be described by the following ODE. g, _ o~
D )Pl @(—b f ] 4y
. = (1) w| v t
p(t) =w x p(t) +v iq""[— %>|;1 — [ [Ol . OF] [ p(l) ] (2)
N~ ‘

. Hmegtneon, Coondline 1
ﬁy(‘(') Yy —> /')5/(1-)—:[9&):)
® Solution to (2) in homogeneous coordina&/e IS: gx

) B ]

0 0 1

B ;ﬁ)‘*‘”"k& uder

4r¥% € SEQ)
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Rigid Transformation via Diffﬁz‘r‘teﬁtial Equation (3/3)
&
® For any twist V = (w,v), let [V]lTae its matrix representation

€bx|
V] = [ el ] e g

® The above definition also applies to a screw axis S = (w,v)<> $= g, 4, Z?

~

* With this notation, the solution to (2) is p(t) = e!*/*5(0)

® Fact: el®!* € SE(3) is always a valid homogeneous transformation matrix.
AN\~ —~—

® Fact: Any T' € SE(3) can be written as T' = elSIt e it can be viewed as
an operator that moves a point/frame along the screw axis at unit speed for
time ¢

Rigid Trans. Operation Advanced Control for Robotics Wei Zhang (SUSTech) 13 /17



se(3) 2 (5 =169 v (W) € Sol3) — o _ R eS00)
e Similar to so(3), we can define se(3): " ] €se(zy = QBZ]O:T€SE(3)

TTN——

se(3) = {([w],v) : [w] € s50(3),v € R*}
J

[Tu.] , V
) 0
® se(3) contains all matrix representation of twists or equivalently all twists.

® |n some references, [V] is called a twist.

® Sometimes, we may abuse notation by writing V € se(3).
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Rigid Trans. Operation in Frames

® ODE for rigid motion under V = (w,v)

p=vrwxp =i=| 0|50 = 0 = V50)

® Consider “unit velocity” V = §, then time t means degree

T n \ ('?() = <
e ' = Tp: "rotate” p along screw axis S by 0 degree T:e[_"sjp

o sfcaal%, ) °/)‘) '20—[— ,o;}‘g

® TT4: “rotate” {A}-frame along S by 0 degree = f/_\’j

.QTA = Ty

® Expression of 1" in another frame (other than {O}):

T < T;'TTg
operation in {O} operation in {B}
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Rigid Operation for Screw Axis

® Consider an arbitrary screw axis S, suppose the axis has gone through a rigid

transformation 1" =

(R, p) and the resulting new screw axis is S, then

Jod!: wevke u‘-u,\ an arki{-/mh\') "{brw\( {A)]
Leb’s assume o ~yomye 1By 75 Ltainey ]'J u‘

M)?P'J“\a T &ia

e odinade o S in (AL, b Hu
foint 05 HYu CosdMA0 A gl m (laj
.0, Ag: QS' _._O

o

‘(S/ = |[Adp| S
proof: (% b )
S’—(s h, i >
"D Ny
@
by \/
Mm: TZ QE&]O —

Rigid Trans. Operation

= W lse bhaw AT, =

(T whs vy + (30
ﬁa@

|
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