MEE5114 Advanced Control for Robotics

Lecture 3: Operator View of Rigid-Body Transformation

Prof. Wei Zhang

SUSTech Insitute of Robotics

Department of Mechanical and Energy Engineering

Southern University of Science and Technology, Shenzhen, China

Outline

• Rotation Operation

• Rigid-Body Transformation Operation

Outline

• Rotation Operation

• Rigid-Body Transformation Operation

Skew Symmetric Matrices

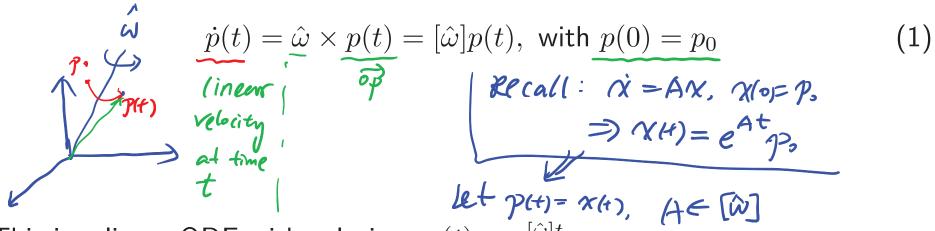
- Recall that cross product is a special linear transformation.
- For any $\omega \in \mathbb{R}^n$, there is a matrix $[\omega] \in \mathbb{R}^{n \times n}$ such that $\omega \times p = [\omega]p$

$$\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} \leftrightarrow [\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

- Note that $[\omega] = -[\omega]^T \leftarrow \text{skew symmetric}$
- ullet $[\omega]$ is called a skew-symmetric matrix representation of the vector ω
- The set of skew-symmetric matrices in: $so(n) \triangleq \{S \in \mathbb{R}^{n \times n} : S^T = -S\}$
- We are interested in case n=2,3

Rotation Operation via Differential Equation

- Consider a point initially located at p_0 at time t=0
- Rotate the point with unit angular velocity $\hat{\omega}$. Assuming the rotation axis passing through the origin, the motion is described by



- This is a linear ODE with solution: $p(t) = e^{[\hat{\omega}]t} p_0$
- After $t=\theta$, the point has been rotated by $\underline{\theta}$ degree. Note $\underline{p}(\theta)=\underline{e^{[\hat{\omega}]\theta}}p_0$
- $\operatorname{Rot}(\hat{\omega}, \theta) \triangleq e^{[\hat{\omega}]\theta}$ can be viewed as a rotation operator that rotates a point about $\hat{\omega}$ through θ degree

Rotation Matrix as a Rotation Operator (1/2)

Every rotation matrix R can be written as $R = \text{Rot}(\hat{\omega}, \theta) \triangleq e^{[\hat{\omega}]\theta}$, i.e., it represents a rotation operation about $\hat{\omega}$ by θ .

• We have seen how to use R to represent frame orientation and change of coordinate between different frames. They are quite different from the operator interpretation of R.

$$\mathbb{R}^{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

• To apply the rotation operation, all the vectors/matrices have to be expressed in the **same reference frame** (this is clear from Eq (1))

Rotation Matrix as a Rotation Operator (2/2)

• For example, assume
$$R=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right]=\mathrm{Rot}(\hat{\mathbf{x}};\pi/2)$$

• Consider a relation q = Rp:

- Change reference frame interpretation:

- Change reference frame interpretation:

- R: Orientation of (B) relative to (A)

- Then: P and q are coordinates of the same point in (B), (A)

- Pand 4 and the Rotation operator interpretation:

- $\frac{y}{and} \frac{d}{d} \frac{d}{$

Consider the frame operation:

- Change of reference frame: $R_B = RR_A$ - Have one "frame object", and two refrence frames

- Rotating a frame: $R'_A = RR_A$

-two frame objects TAI, 1A')

rotation operation

one refrence frame. Ro= R RA

more specifically, PRA= R RA

Rotation Operation in Different Frames (1/2) Condinate free notation • Consider two frames {A} and {B}, the actual numerical values of the

• Consider two frames $\{A\}$ and $\{B\}$, the actual numerical values of the operator $\operatorname{Rot}(\hat{\omega},\theta)$ depend on both the reference frame to represent $\hat{\omega}$ and the reference frame to represent the operator itself.

• Consider a rotation axis $\hat{\omega}$ (coordinate free vector), with $\{A\}$ -frame coordinate ${}^{A}\hat{\omega}$ and $\{B\}$ -frame coordinate ${}^{B}\hat{\omega}$. We know

$$^{A}\hat{\omega} = {}^{B}R_{A}{}^{B}\hat{\omega}$$

• Let ${}^{B}\mathrm{Rot}({}^{B}\hat{\omega},\theta)$ and ${}^{A}\mathrm{Rot}({}^{A}\hat{\omega},\theta)$ be the two rotation matrices, representing the same rotation operation $\mathrm{Rot}(\hat{\omega},\theta)$ in frames $\{A\}$ and $\{B\}$.

Rotation Operation in Different Frames (2/2)

We have the relation: $A \operatorname{Rot}(A \hat{\omega}, \theta) = A R_B \operatorname{Rot}(B \hat{\omega}, \theta) B R_A$ -1: approach: time points p Roti) p' = Rot (4w.0) Ap -2°: Identity: for any a EIR3, Bp'= BRot (\$\infty 10) Bp and any RESO(3) => 10R 17 = ARB Ro+(BW, O)(BR Ap) [Ra] = R[a]RT =) Ap'= |AR5 Rot (Bw, 0)BRA verity yourelf (pluy in definition) $Rot(A\hat{\omega};\theta) = e^{[A\hat{\omega}]\theta} = e^{[A\hat{\omega}]\theta}$ QJ: eTAW X Tehw etati = I + TAT-1 + TAT-1 + ... = TeAT-1

Outline

Rotation Operation

• Rigid-Body Transformation Operation

Rigid Transformation via Differential Equation (1/3)

• Recall: Every $R \in SO(3)$ can be viewed as the state transition matrix associated with the rotation ODE(1). It maps the initial position to the current position (after the rotation motion)

- $p(\theta) = \text{Rot}(\hat{\omega}, \theta) p_0$ viewed as a solution to $\dot{p}(t) = [\hat{\omega}] p(t)$ with $p(0) = p_0$ at $t = \theta$.

- The above relation requires that the rotation axis passes through the origin.

• We can obtain similar ODE characterization for $T \in \underline{SE(3)}$, which will lead to exponential coordinate of SE(3)

Rigid Transformation via Differential Equation (2/3)

 Recall: Theorem (Chasles): Every rigid body motion can be realized by a screw motion

• Consider a point p undergoes a screw motion with screw axis S and unit

speed $(\dot{\theta}=1)$. Let the corresponding twist be $\mathcal{V}=\mathcal{S}=(\omega,v)$. The motion

$$\dot{p}(t) = \omega \times p(t) + v \quad \Rightarrow 4x \left[-\frac{\dot{p}(t)}{0} \right] = \begin{bmatrix} -\omega \\ 0 \end{bmatrix} \begin{bmatrix} v \\ 0 \end{bmatrix} \begin{bmatrix} p(t) \\ 1 \end{bmatrix}$$
 (2)

• Solution to (2) in homogeneous coordinate is:
$$(x, y)$$

$$\begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \exp\left(\begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} t\right) \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$$

Rigid Transformation via Differential Equation (3/3)

• For any twist $\mathcal{V}=(\omega,v)$, let $[\mathcal{V}]$ be its matrix representation

$$[\mathcal{V}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{q \times q}$$

- The above definition also applies to a screw axis $\mathcal{S}=(\omega,v)$ \sim \mathcal{S} $\{\hat{s},h,t\}$
- With this notation, the solution to (2) is $\tilde{p}(t) = e^{[S]t}\tilde{p}(0)$
- Fact: $e^{[S]t} \in SE(3)$ is always a valid homogeneous transformation matrix.
- Fact: Any $T \in SE(3)$ can be written as $T = e^{[\mathcal{S}]t}$, i.e., it can be viewed as an operator that moves a point/frame along the screw axis at unit speed for time t

$$se(3)$$
 $\Rightarrow Se(3) = \{\omega\}$ $\Rightarrow E(3) \Rightarrow e^{[\omega]0} = ReSO(3)$

• Similar to $so(3)$, we can define $\underline{se(3)} : \forall [\omega] \in Se(3) \Rightarrow e^{[\omega]0} = TeSE(3)$

$$se(3) = \{([\omega], v) : [\omega] \in so(3), v \in \mathbb{R}^3\}$$

$$[[\omega], v]$$

• se(3) contains all matrix representation of twists or equivalently all twists.

• In some references, $[\mathcal{V}]$ is called a twist.

Sometimes, we may abuse notation by writing $\mathcal{V} \in se(3)$.

Rigid Trans. Operation in Frames

• ODE for rigid motion under $\mathcal{V} = (\omega, v)$

$$\dot{p} = v + \omega \times p \quad \Rightarrow \dot{\tilde{p}}(t) = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \tilde{p}(t) \Rightarrow \tilde{p}(t) = e^{[\mathcal{V}]t} \tilde{p}(0)$$

ullet Consider "unit velocity" $\mathcal{V}=\mathcal{S}$, then time t means degree ,

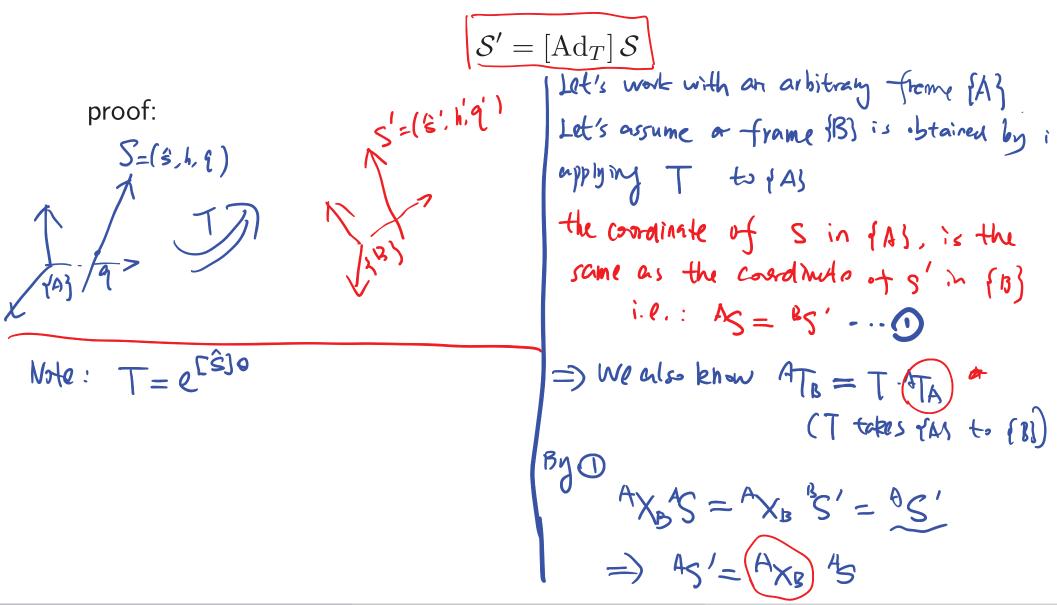
$$\tilde{p}' = T\tilde{p}: \text{ "rotate" } p \text{ along screw axis } \mathcal{S} \text{ by } \theta \text{ degree}$$

- TT_A : "rotate" {A}-frame along S by θ degree $\Rightarrow A'$ A'
- Expression of T in another frame (other than $\{O\}$):

$$\begin{array}{ccc} T & \leftrightarrow & T_B^{-1}TT_B \\ \text{operation in } \{\mathsf{O}\} & \text{operation in } \{\mathsf{B}\} \end{array}$$

Rigid Operation for Screw Axis

• Consider an arbitrary screw axis \mathcal{S} , suppose the axis has gone through a rigid transformation T=(R,p) and the resulting new screw axis is \mathcal{S}' , then



More Space

$$AX_{L} = [Ad_{A_{\overline{h}}}] = [Ad_{T}] \in 6 \times 6$$