MEE5114 Advanced Control for Robotics

Lecture 4: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

- Exponential Coordinate of SO(3) yotation matrix
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3) hom a transformation matrix
- Instantaneous Velocity of Moving Frames

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)
- Instantaneous Velocity of Moving Frames

Towards Exponential Coordinate of SO(3)

- Recall the polar coordinate system of the complex plane: \checkmark
 - Every complex number $z = x + jy = \rho e^{j\phi}$
 - Cartesian coordinate $(x,y) \leftrightarrow \text{polar coorindate } (\rho,\phi)$
 - For some applications, the polar coordinate is preferred due to its geometric meaning.

- For any rotation matrix $R \in SO(3)$, it turned out $R = e^{[\hat{\omega}]\theta}$
 - $\hat{\omega}$: unit vector representing the axis of rotation
 - θ : the degree of rotation
 - $\hat{\omega}\theta$ is called the **exponential coordinate** for SO(3).

Exponential Coordinate of SO(3)

Proposition 1 (Exponential Coordinate \leftrightarrow SO(3)).

- For any unit vector $[\hat{\omega}] \in so(3)$ and any $\theta \in \mathbb{R}$, $(e^{[\hat{\omega}]\theta} \in SO(3))$
- For any $R \in SO(3)$, there exists $\hat{\omega} \in \mathbb{R}^3$ with $\|\hat{\omega}\| = 1$ and $\theta \in \mathbb{R}$ such that

 $R = e^{[\hat{\omega}]\theta}$

exp:
$$[\hat{\omega}]\theta \in so(3) \rightarrow R \in SO(3)$$

log: $R \in SO(3) \rightarrow [\hat{\omega}]\theta \in so(3)$

- The vector $\hat{\omega}\theta$ is called the *exponential coordinate* for R
- The exponential coordinates are also called the canonical coordinates of the rotation group SO(3)

Rotation Matrix as Forward Exponential Map

• Exponential Map: By definition

$$e^{[\omega]\theta} = I + \theta[\omega] + \frac{\theta^2}{2!} [\omega]^2 + \frac{\theta^3}{3!} [\omega]^3 + \cdots$$

• Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in so(3)$, we have

 $e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin(\theta) + [\hat{\omega}]^{2}(1 - \cos(\theta))$ Fact: if $Ii\hat{\omega}I = [+ hen [\hat{\omega}] = -[\hat{\omega}]^{T}$, $(\hat{\omega}]^{3} = -[\hat{\omega}]$, $[\hat{\omega}]^{4} = [\hat{\omega}]^{3}[\omega]$ $= -[\hat{\omega}]^{2}$ $= I + [\hat{\omega}]\theta + \frac{\partial^{2}}{2}[\hat{\omega}]^{2} + \frac{\partial^{3}}{3!}(-[\hat{\omega}]) + \frac{\partial^{4}}{4!}(-[\hat{\omega}]^{2}) + \dots$ $= I + (\theta - \frac{\partial^{3}}{3!} + \frac{\partial^{5}}{5!} + \dots)[\hat{\omega}] + (\frac{\partial^{2}}{2!} - \frac{\partial^{4}}{4!} + \frac{\partial^{5}}{6!} - \dots)[\hat{\omega}]^{2}$ $= I - Co_{3} = 0$

Examples of Forward Exponential Map

• Rotation matrix
$$R_x(\theta)$$
 (corresponding to $\hat{x}\theta$)
 $\Re(\hat{x},\theta) = e^{(\Re)\theta} = \underline{I} + \varsigma h \theta \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} + (1-(\sigma_1\theta) \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
 $\hat{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\sigma_2 \theta - sin\theta) \\ 0 & sin\theta & (\sigma_3 \theta) \end{bmatrix}$
• Rotation matrix corresponding to $(1,0,1)^T \in \exp$ coord Made
 $\hat{\omega} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$

Logarithm of Rotations

• If
$$R = I$$
, then $\theta = 0$ and $\hat{\omega}$ is undefined.

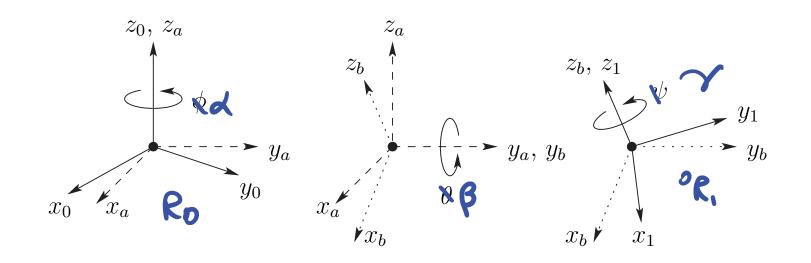
• If tr(R) = -1, then $\theta = \pi$ and set $\hat{\omega}$ equal to one of the following

$$\frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$

• Otherwise, $\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr}(R) - 1)\right) \in [0, \pi)$ and $[\hat{\omega}] = \frac{1}{2\sin(\theta)}(R - R^T)$

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)
- Instantaneous Velocity of Moving Frames

Euler Angle Representation of Rotation



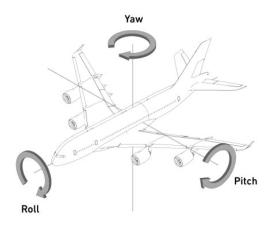
- A common method of specifying a rotation matrix is through three independent quantities called **Euler Angles**.
- Euler angle representation
 - Initially, frame $\{0\}$ coincides with frame $\{1\}$
 - Rotate {1} about \hat{z}_0 by an angle α , then rotate about \hat{y}_a axis by β , and then rotate about the \hat{z}_b axis by γ . This yields a net orientation ${}^{0}R_1(\alpha, \beta, \gamma)$ parameterized by the ZYZ angles (α, β, γ)

$$- {}^{0}R_{1}(\alpha, \beta, \gamma) = \underbrace{R_{z}(\alpha)R_{y}(\beta)R_{z}(\gamma)}_{W0} \iff \underbrace{R_{1}(\alpha, \beta, \gamma)}_{W0} = \underbrace{R_{z}(\alpha)R_{y}(\beta)R_{z}(\gamma)}_{W0} \iff \underbrace{R_{z}(\alpha, \beta, \gamma)}_{W0} = \underbrace{R_{z}(\alpha)R_{y}(\beta)R_{z}(\gamma)}_{W0}$$

Euler Angles

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
 - ZYX Euler angles: also called *Fick angles* or yaw, pitch and roll angles $R_z(\beta) R_y(\beta) R_x(\gamma)$
 - YZX Euler angles (Helmholtz angles)



- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)
- Instantaneous Velocity of Moving Frames

Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1.

For any
$$\mathcal{V} = (\omega, v)$$
 and $\theta \in \mathbb{R}$, we have $e^{[\mathcal{V}]\theta} \in SE(3)$

• Case 1 (
$$\omega = 0$$
): $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

• Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$e^{[\mathcal{V}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}, \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2 \quad (1)$$

$$\mathcal{V} \in |\mathcal{R}^{bx/l} = \begin{bmatrix} w \\ v \end{bmatrix}, \quad [\mathcal{V}] = \begin{bmatrix} z \times 3 \\ (w) \\ (w) \\ v \end{bmatrix} \in |\mathcal{R}^{4\times 4}, \quad \underbrace{e^{[\mathcal{K}]} v}_{m} \in SE(3)$$
Forward, map from se(s) $\xrightarrow{e^{(v)}}_{m} SE(1)$
Forward, map from se(s) $\xrightarrow{e^{(v)}}_{m} SE(1)$
Exponential twist transformation show axis matrix

.1

Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2.

 $T = \begin{bmatrix} R & P \end{bmatrix}$ Given any $T = (R, p) \in SE(3)$, one can always find twist $\mathcal{V} = (\omega, \underline{v})$ and a scalar θ such that $e^{[\mathcal{V}]\theta} = T = \left| \begin{array}{cc} R & p \\ 0 & 1 \end{array} \right|$

Matrix Logarithm Algorithm:

- If R = I, then set $\omega = 0$, v = p/||p||, and $\theta = ||p||$.
- Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is calculated as $v = G^{-1}(\theta)p$, where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2$$

Exponential Coordinates of Rigid Transformation

• To sum up, screw axis $\mathcal{S}=(\omega,v)$ can be expressed as a normalized twist; its matrix representation is

$$[\mathcal{S}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

- A point started at p(0) at time zero, travel along screw axis S at unit speed for time t will end up at $\tilde{p}(t) = e^{[S]t}\tilde{p}(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $S = (\omega, v)$ and θ such that $e^{[S]\theta} = T$. $T = e^{[S]\theta}$ means
- We call $S\theta$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$

- Spatial velocity Awast:
$$\mathcal{V} = \begin{bmatrix} w \\ v_0 \end{bmatrix}$$
, ref point "o" may not move at all
- w : anywhan velocity
- vo : velocity of the body-fixed point currently coincides with o
- $velolity$ of any body-fixed point p is $v_p = v_0 + w \times rop$)
- Thirst in frames: Diven frame $\{B\}$, $fo\}$ with veloctim $\sigma_{T_B} = (R, p)$
- $\mathcal{O} = \begin{bmatrix} \sigma w \\ \sigma v_0 \end{bmatrix}$, $\mathcal{B} \mathcal{V} = \begin{bmatrix} \mathcal{B} w \\ \mathcal{B} v_B \end{bmatrix}$
origin of r_0 frame $vrisch af rB$
 $\mathcal{O} = \begin{pmatrix} \infty \\ \sigma v_0 \end{pmatrix}$, $\mathcal{B} \mathcal{V} = \begin{bmatrix} \mathcal{B} w \\ \mathcal{B} v_B \end{bmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{pmatrix} \infty \\ \sigma v_0 \end{pmatrix}$, $\mathcal{B} \mathcal{V} = \begin{bmatrix} \mathcal{B} w \\ \mathcal{B} v_B \end{bmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{pmatrix} \infty \\ \sigma v_0 \end{pmatrix}$, $\mathcal{B} \mathcal{V} = \begin{bmatrix} \mathcal{B} w \\ \mathcal{B} v_B \end{bmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{pmatrix} \infty \\ \sigma v_0 \end{pmatrix}$, $\mathcal{B} \mathcal{V} = \begin{bmatrix} \mathcal{B} w \\ \mathcal{B} v_B \end{bmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{pmatrix} \infty \\ \mathcal{B} \mathcal{B} \end{pmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{bmatrix} \mathcal{A} \\ \mathcal{B} \mathcal{B} \end{bmatrix}$
 $\mathcal{O} \mathcal{V} = \begin{bmatrix} \mathcal{A} \\ \mathcal{B} \mathcal{A} \end{bmatrix} = \begin{bmatrix} R & 0 \\ [\mathcal{D}] R & R \end{bmatrix}$

for any
$$T \in S \in (3)$$
, $\Rightarrow [Ad_T] \stackrel{c}{=} [K \circ \\ (R,q) \\ T = e^{[S]0} \stackrel{c}{\Rightarrow} S \stackrel{c}{\Rightarrow} S' \\ \xrightarrow{hvret} S' \\ \xrightarrow{hs} S' \\ \xrightarrow{hvret} S' \\ \xrightarrow{hs} S$

• Exponential coordinate & rotation operator (with fos)
- DDE for rotation:
$$\dot{p} = wx p = (w) p = p(t) = e^{[w]t} y(t)$$

- $if w = \hat{\omega}$, unit vector, $t = \theta$
- $\dot{w} \theta \iff R = e^{(\hat{w})\theta} \in SO(s)$. $\hat{w} \theta$ is exp. coordinate of R
- $P' = e^{[\hat{w}]\theta} p$
R
- Given frame (A), $Ra = [\hat{x}_{a}, \hat{y}_{a}, \hat{z}_{a}]$, then RR_{a} areas rotate
(A) about $\hat{\omega}$ by θ
- Expression of rotation operator R in another frame (B).
R
R
R
rotation matrix
 $Ntation in f(B)$

- Exp coordinate for visit body motion I with \$053
- ODE:
$$\vec{p} = v + (w) \vec{p}$$
 under twist $\mathcal{V} = [\vec{w}]$
- $= \hat{j}^{3} = [\vec{w}] \quad v \in \vec{p} \Rightarrow \vec{p}(t) = e^{[\mathcal{V}]t} \hat{j}^{2}(s)$
- consider unit-twist $[\mathcal{V}] \in \mathbb{R}^{WrY}$
- sels) $\frac{exp}{\log T} = e^{[\vec{s}]\cdot\vec{v}}$
- $\tilde{p}' = T \hat{p}$: rotate p along s by 0 degree
- $T \cdot T_{A}$: rotate frame pA alog
- $rxjid$ operation on screw axis: $[Ad_{T}] \cdot S_{A}$ means rotate screw
 $T = e^{[\vec{s}]\cdot\vec{v}} = \frac{e^{[\vec{s}]\cdot\vec{v}}}{\delta x \delta \delta x \delta \delta x \delta \delta x}$

Outline - expression of T in βB $T = T T_{B}^{-1} T_{T_{R}}$

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)
- Instantaneous Velocity of Moving Frames

Instantaneous Velocity of Rotating Frame

- {A} frame is rotating with orientation R_A(t) and velocity ω_A(t) at time t (Note: everything is wrt {O}-frame)
- Let $\hat{\omega}\theta = \log(R_A(t))$ be its exp. coordinate.
 - Note: $\hat{\omega}\theta$ means $R_A(t)$ can be obtained from the reference frame (say $\{O\}$ -frame) by rotating about $\hat{\omega}$ by θ degree.
 - $\hat{\omega}\theta$ only describes the current orientation of {A} relative to {O}, it does not contain info about how the frame is rotating at time t.
- What is the relation between $\omega_A(t)$ and $R_A(t)$?

$$\frac{d}{dt}R_{A}(t) = [\omega_{A}(t)]R_{A}(t) \Rightarrow [\omega_{A}(t)] = \dot{R}_{A}(t)R_{A}^{-1}(t)$$

$$R_{A}(t) = [\gamma_{A}(t) \ \gamma_{A}(t) \ z_{A}(t)]$$

$$\dot{\gamma}_{A}(t) = [\omega_{A} \times \gamma_{A}(t) \ z_{A}(t)]$$

$$\dot{\gamma}_{A}(t) = [\omega_{A} \times \gamma_{A}(t) \ z_{A}(t)] = [\omega_{A} \gamma_{A}(t) \ \gamma_{A}(t) = [\omega_{A} \gamma_{A}(t)], \quad \dot{z}_{A}(t) = [\omega_{A} \gamma_{A}(t)]$$

$$\dot{\gamma}_{A}(t) = [\omega_{A} \times \gamma_{A}(t) \ z_{A}(t)] = [\omega_{A} \gamma_{A}(t) \ \gamma_{A}(t) = [\omega_{A} \gamma_{A}(t)], \quad \dot{z}_{A}(t) = [\omega_{A} \gamma_{A}(t)]$$

Instantaneous Velocity of Moving Frame

- {A} moving frame with configuration $T_A(t)$ at time t undergoes a rigid body motion with velocity $\mathcal{V}_A(t) = (\omega, v)$ (Note: everything is wrt {O}-frame)
- The exponential coordinate $\hat{S}\theta = \log(T_A(t))$ only indicates the current configuration of $\{A\}$, and does not tell us about how the frame is moving at time t.
- What is the relation between $\mathcal{V}_A(t)$ and $T_A(t)$?

$$\frac{d}{dt}T_{A}(t) = [\mathcal{V}_{A}(t)]T_{A}(t) \Rightarrow [\mathcal{V}_{A}(t)] = \dot{T}_{A}(t)T_{A}^{-1}(t)$$

$$T_{A} = \begin{pmatrix} \mathcal{R}_{A} & \mathcal{P}_{A} \\ \odot & 1 \end{pmatrix}, \text{ a frame can be determined by direction verter of over s, and origin \mathcal{P}_{free} for \mathcal{P}_{oint}

$$T_{In homogeneous coordinate: \qquad \mathcal{P}_{A} = \begin{pmatrix} \mathcal{P}_{A} \\ \circ \end{pmatrix}, \qquad \mathcal{P}_{A} = \begin{pmatrix} \mathcal{P}_{A} \\ \mathcal{P}_{A} \end{pmatrix}, \qquad \mathcal{P}_{A} = \begin{pmatrix} \mathcal{P}_{A} \\ \mathcal{P}_{A} \end{pmatrix}, \qquad$$$$

18 / 20

More Space

More Space