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Motivation

• Optimization is arguably the most important tool for modern engineering
• Robotics

- Differential Inverse Kinematics
- Dynamics
- Motion planning
- Whole-body control: formulated as a quadratic program
- SLAM:
- Perception

• Machine Learning
- Linear regression
- Support vector machine:
- Deep learning

• other domains
- Check system stability: SDP
- Compressive sensing
- Fourier transform: least square problem

• Roughly speaking, most engineering problems (finding a better design, ensure
certain properties of the solution, develop an algorithm), can be formulated
as optimization/optimal control problems.
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Real Symmetric Matrices

• Sn: set of real symmetric matrices

• All eigenvalues are real

• There exists a full set of orthogonal eigenvectors

• Spectral decomposition: If A ∈ Sn, then A = QΛQT , where Λ diagonal and
Q is unitary.

Some Linear Algebra Advanced Control for Robotics Wei Zhang (SUSTech) 5 / 53



Positive Semidefinite Matrices (1/3)

• A ∈ Sn is called positive semidefinite (p.s.d.), denoted by A � 0, if
xTAx ≥ 0, ∀x ∈ R

n

• A ∈ Sn is called positive definite (p.d.), denoted by A � 0, if xTAx > 0 for
all nonzero x ∈ R

n

• Sn
+: set of all p.s.d. (symmetric) matrices

• Sn
++: set of all p.d. (symmetric) matrices

• p.s.d. or p.d. matrices can also be defined for non-symmetric matrices.

e.g.:

[
1 1
−1 1

]

• We assume p.s.d. and p.d. are symmetric (unless otherwise noted)

• Notation: A � B (resp. A � B ) means A−B ∈ Sn
+ (resp. A−B ∈ Sn

++)
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Positive Semidefinite Matrices (2/3)
• Other equivalent definitions for symmetric p.s.d. matrices:

- All 2n − 1 principal minors of A are nonnegative

- All eigs of A are nonnegative

- There exists a factorization A = BTB

• Other equivalent definitions for p.d. matrices:

- All n leading principal minors of A are positive

- All eigs of A are strictly positive

- There exists a factorization A = BTB with B square and nonsingular.
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Positive Semidefinite Matrices (3/3)
• Useful facts:

- If T nonsingular, A � 0 ⇔ TTAT � 0; and A � 0 ⇔ TTAT � 0

- Inner product on R
m×n: < A,B >� tr(ATB) � A •B.

- For A,B ∈ Sn
+, tr(AB) ≥ 0

- For any symmetric A ∈ Sn,

λmin(A) ≥ μ ⇔ A � μI and λmax(A) ≤ β ⇔ A � βI
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Gradient and Hessian (1/2)

• Consider a multivariate scalar-valued function f : Rm×n → R that takes a
matrix (or vector) X to a scalar value in R

• Gradient of f wrt X ∈ R
m×n is defined as

∇Xf(X) =

⎡
⎢⎢⎢⎢⎣

∂f(X)
∂X11

∂f(X)
∂X12

· · · ∂f(X)
∂X1n

∂f(X)
∂X21

∂f(X)
∂X22

· · · ∂f(X)
∂X2n

...
...

. . .
...

∂f(X)
∂Xm1

∂f(X)
∂Xm2

· · · ∂f(X)
∂Xmn

⎤
⎥⎥⎥⎥⎦
∈ R

m×n

• ∇Xf(X) is an m× n matrix, its size is the same as X
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Gradient and Hessian (2/2)
• For vector case, x ∈ R

n, then ∇xf(x) is also a vector:

∇xf(x) =

⎡
⎢⎢⎢⎢⎣

∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn

⎤
⎥⎥⎥⎥⎦

• Let x ∈ R
n, the Hessian matrix of f wrt x is defined as

∇2
xf(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f(x)

∂x2
1

∂2f(x)
∂x1x2

· · · ∂2f(x)
∂x1xn

∂2f(x)
∂x2x1

∂2f(x)

∂x2
2

· · · ∂2f(x)
∂x2xn

...
...

. . .
...

∂2f(x)
∂xnx1

∂2f(x)
∂xnx2

· · · ∂2f(x)

∂x2
n

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n

• Hessian is always symmetric, and we typically do not consider Hessian wrt
matrix variables
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Examples (1/2)

• f(x) = bTx

• f(x) = xTAx (Suppose A is symmetric)
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Examples (2/2)

Consider matrix variable X ∈ R
m×n

• f(X) = aTXb

• f(X) = tr(AXB)

• f(X) = det(X)
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Affine Sets and Functions (1/3)

• Linear mapping: f(x+ y) = f(x) + f(y) and f(αx) = αx, for any x, y in
some vector space, and α ∈ R

- f(x) = Ax, x ∈ R
3, A ∈ SO(3)

- f [x] =
∫
x(τ)dτ , for all integrable function x(·)

- E(x) expection of a random variable/vector x

- f(x) = tr(x), x ∈ Rn×n
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Affine Sets and Functions (2/3)
• Affine mapping: f(x) is an affine mapping of x if g(x) � f(x)− f(x0) is a

linear mapping for some fixed x0

• Finite-dimension representation of affine function: f(x) = Ax+ b

• Homogeneous representation in R
n:

f(x) = Ax+ b ⇔ f̃(x̃) = Ãx̃,

with Ã =

[
A b
0 1

]
, x̃ =

[
x
1

]

• Linear and affine are often used interchangeably
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Affine Sets and Functions (3/3)
• Linear/affine sets: {x : f(x) ≤ 0} for affine mapping f

- Line/hyperplane: aTx = b

- Half space: aTx ≤ b

- Polyhedron: Hx ≤ h

- For matrix variable X ∈ R
n×n, tr(AX) ≤ 0 for given constant matrix A ∈ R

n×n

is a halfspace in R
n×n
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Quadratic Sets and Functions

• Quadratic functions in R
n: f(x) = xTAx+ bTx+ c

• Quadratic functions (homogeneous form): f(x) = xTAx

- A ∈ S+ ⇔ f(x) ≥ 0, ∀x ∈ R
n

• Quadratic sets: {x :∈ R
n : f(x) ≤ 0} for some quadratic function f

- e.g.: Ball:

- e.g.: Ellipsoid:
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Convex Set

• Convex Set: A set S is convex if

x1, x2 ∈ S ⇒ αx1 + (1− α)x2 ∈ S, ∀α ∈ [0, 1]

• Convex combination of x1, . . . , xk:{
α1x1 + α2x2 + · · ·+ αkxk : αi ≥ 0, and

∑
i

αi = 1

}

• Convex hull: co {S} set of all convex combinations of points in S
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Convex Cone

• A set S is called a cone if λ > 0, x ∈ S ⇒ λx ∈ S.

• Conic combination of x1 and x2:
x = α1x1 + α2x2 with α1, α2 ≥ 0

• Convex cone:

1. a cone that is convex

2. equivalently, a set that contains all the conic combinations of points in the set
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Positive Semidefinite Cone

• The set of positive semidefinite matrices (i.e. Sn
+) is a convex cone and is

referred to as the positive semidefinite (PSD) cone

• Recall that if A,B ∈ Sn
+, then tr(AB) ≥ 0. This indicates that the cone Sn

+

is acute.
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Operations that Preserve Convexity (1/1)

• Intersection of possibly infinite number of convex sets:

- e.g.: polyhedron:

- e.g.: PSD cone:

• Affine mapping f : Rn → R
m (i.e. f(x) = Ax+ b)

- f(X) = {f(x) : x ∈ X} is convex whenever X ⊆ R
n is convex

e.g.: Ellipsoid: E1 = {x ∈ R
n : (x− xc)

TP (x− xc) ≤ 1} or equivalently
E2 = {xc +Au : ‖u‖2 ≤ 1}

- f−1(Y ) = {x ∈ R
n : f(x) ∈ Y } is convex whenever Y ⊆ R

m is convex
e.g.: {Ax ≤ b} = f−1(Rn

+), where R
n
+ is nonnegative orthant
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Convex Function

Consider a finite dimensional vector space X . Let D ⊂ X be convex.

Definition 1 (Convex Function).

A function f : D → R is called convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), ∀x1, x2 ∈ D, ∀α ∈ [0, 1]

• f : D → R is called strictly convex if
f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2), ∀x1 = x2 ∈ D, ∀α ∈ [0, 1]

• f : D → R is called concave if −f is convex
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How to Check a Function is Convex?

• Directly use definition

• First-order condition: If f is differentiable over an open set that contains D,
then f is convex over D iff

f(z) ≥ f(x) +∇f(x)T (z − x), ∀x, z ∈ D

• Second-order condition: Suppose f is twicely differentiable over an open set
that contains D, then f is convex over D iff

∇2f(x) � 0, ∀x ∈ D

• Many other conditions, tricks,... see [BV04].
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Examples of Convex Functions

• In general, affine functions are both convex and concave

- e.g.: f(x) = aTx+ b, for x ∈ R
n

- e.g.: f(X) = tr(ATX) + c =
∑m

i=1

∑n
j=1 AijXij + c, for X ∈ R

m×n

• Quadratic functions: f(x) = xTQx+ bTx+ c is convex iff Q � 0

• All norms are convex

- e.g. in R
n: f(x) = ‖x‖p =

(∑n
i=1 |xi|p

)1/p
; f(x) = ‖x‖∞ = maxk |xk|

- e.g. in R
m×n: f(X) = ‖X‖2 = σmax(X)

Sets and Functions Advanced Control for Robotics Wei Zhang (SUSTech) 25 / 53



Outline

• Motivation

• Some Linear Algebra

• Some Multivariable Calculus

• Sets and Functions

• Short Introduction to Optimization

• Linear Program

• Quadratic Program

• Some Examples

Basic Optimization Advanced Control for Robotics Wei Zhang (SUSTech) 26 / 53



Nonlinear Optimization Problems

Nonlinear Optimization:⎧⎪⎨
⎪⎩
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

• decision variable x ∈ R
n, domain D, referred to as primal problem

• optimal value p∗

• is called a convex optimization problem if f0, . . . , fm are convex and
h1, . . . , hq are affine

• typically convex optimization can be solved efficiently
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Lagrangian

Associated Lagrangian: L : D × R
m × R

q → R

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

• weighted sum of objective and constraints functions

• λi: Lagrangian multiplier associated with fi(x) ≤ 0

• νi: Lagrangian multiplier associated with hi(x) = 0
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Lagrange Dual Problems (1/2)

Lagrange dual function: g : Rm × R
q :→ R

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

{
f0(x) +

m∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

}

• g is concave, can be −∞ for some λ, ν

• Lower bound property: If λ � 0 (elementwise), then g(λ, ν) ≤ p∗
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Lagrange Dual Problems (2/2)

Lagrange Dual Problem: {
maximize : g(λ, ν)

subject to: λ � 0

• Find the best lower bound on p∗ using the Lagrange dual function

• a convex optimization problem even when the primal is nonconvex

• optimal value denoted d∗

• (λ, ν) is called dual feasible if λ � 0 and (λ, ν) ∈ dom(g)

• Often simplified by making the implicit constraint (λ, ν) ∈ dom(g) explicit
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Duality Theorems

• Weak Duality: d∗ ≤ p∗

- always hold (for convex and nonconvex problems)

- can be used to find nontrivial lower bounds for difficult problems

• Strong Duality: d∗ = p∗

- not true in general, but typically holds for convex problems

- conditions that guarantee strong duality in convex problems are called constraint
qualifications

- Slater’s constraint qualification: Primal is strictly feasible
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General Optimality Conditions (1/3)

For general optimization problem:⎧⎪⎨
⎪⎩
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

General optimality condition:

strong duality and (x∗, λ∗, ν∗) is primal-dual optimal ⇔

• x∗ = argminx L(x, λ
∗, ν∗) (Lagrange optimality)

• λ∗
i fi(x

∗) = 0 for all i (Complementarity)

• fi(x
∗) ≤ 0 hj(x

∗) = 0, for all i, j (primal feasibility)

• λ∗
i ≥ 0 for all i (dual feasibility)
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General Optimality Conditions (2/3)

Proof of Necessity

• Assume x∗ and (λ∗, ν∗) are primal-dual optimal slns with zero duality gap,

f(x∗) = g(λ∗, ν∗)

= min
x∈D

⎛
⎝f(x) +

∑
i

λ∗
i fi(x) +

∑
j

ν∗j hj(x)

⎞
⎠

≤ f(x∗) +
∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗)

≤ f(x∗)

• Therefore, all inequalities are actually equalities

• Replacing the first inequality with equality ⇒ x∗ = argminxL(x, λ
∗, ν∗)

• Replacing the second inequality with equality ⇒ complementarity condition
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General Optimality Conditions (3/3)

Proof of Sufficiency

• Assume (x∗, λ∗, ν∗) satisfies the optimality conditions:

g(λ∗, ν∗) = f(x∗) +
∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗)

= f(x∗)

• The first equality is by Lagrange optimality, and the 2nd equality is due to
complementarity

• Therefore, the duality gap is zero, and (x∗, λ∗, ν∗) is the primal dual optimal
solution
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KKT Conditions

For convex optimization problem:⎧⎪⎨
⎪⎩
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

Suppose duality gap is zero, then (x∗, λ∗, ν∗) is primal-dual optimal if and only if
it satisfies the Karush-Kuhn-Tucker (KKT) conditions

• ∂L
∂x (x, λ

∗, ν∗) = 0 (Stationarity)

• λ∗
i fi(x

∗) = 0 for all i (Complementarity)

• fi(x
∗) ≤ 0 hj(x

∗) = 0, for all i, j (primal feasibility)

• λ∗
i ≥ 0 for all i (dual feasibility)
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Linear Program: Primal and Dual Formulations

• Primal Formulation:

⎧⎪⎨
⎪⎩
minimize: cTx

subject to: Ax = b

x ≥ 0

• Its Dual:

{
maximize: −bT ν

subject to: AT ν + c ≥ 0
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Linear Program: Example

A toy company produces toy planes and toy boats. Price: �10 per plane and �8 per

boat. Cost: �3 in raw materials per plane and �2 per boat. A plane requires 3 hours to

make and 1 hour to finish while a boat requires 1 hour to make and 2 hours to finish.

The company cannot sell anymore than 35 planes per week. Further, given the number

of workers, the company cannot spend anymore than 160 hours per week finishing toys

and 120 hours per week making toys. How much of each toy it needs to produce?

(x∗
1, x

∗
2) = (16, 72)

3x1 + x2 ≤ 120

x1 + 2x2 ≤ 160

x1 ≤ 35

x1 ≥ 0

x2 ≥ 0
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Unconstrained Quadratic Program: Least Squares

• minimize: J(x) = 1
2x

TQx+ qTx+ q0
• Problem is convex iff Q � 0

• When J is convex, it can be written as: J(x) = ‖Q 1
2x− y‖2 + c

• KKT condition:

• Optimal solution:
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Equality Constrained Quadratic Program

• Standard form:

{
minx J(x) = xTQx+ qTx+ q0

subject to: Hx = h

• The problem is convex if Q � 0

• KKT Condition:

• Optimal Solution:

Quadratic Program Advanced Control for Robotics Wei Zhang (SUSTech) 41 / 53



General Quadratic Program

• Standard form:

{
minimize: J(x) = xTQx+ qTx+ q0

subject to: Ax ≤ b

• Dual problem:
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Example I: Identification of Robot Dynamics (1/2)

Quadratic Program Advanced Control for Robotics Wei Zhang (SUSTech) 44 / 53



Example I: Identification of Robot Dynamics (2/2)
•
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Example I: Identification of Robot Dynamics (3/2)
•
•
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Example II: Differential IK (1/2)
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Example II: Differential IK (2/3)
•
•
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Example III: Point Cloud Registration (1/3)
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Example III: Point Cloud Registration (2/3)
•
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Example III: Point Cloud Registration (3/1)
•
•
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