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Why Linear Algebra:

▪ One of the most important tools for modern control theory 

▪ Topics covered in this class, such as 

▪ State space model

▪ Least squares

▪ Stability analysis

▪ Controller/observer design through eigenvalue assignment

▪ Linear quadratic regulator (LQR)

▪ Kalman filter

can be viewed as applications of linear algebra

▪ Crucial for machine learning, robotics, computer vision, … 
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Facts about the students: 

▪ Remember formulas without deep understanding of concepts

▪ Good at numerical calculations, but not analytical analysis

Goal:

▪ Not to recall the formulas or numerical techniques

▪ Review/rebuild fundamental concepts 

▪ “Speak” the language of linear algebra: formulate/analyze/solve 
linear algebra problems without using formulas or numbers

▪ Linear independence

▪ Matrix rank

▪ Vector space

▪ Column space/null space

▪ Solution Ax = b

▪ Just a short review. A good reference is the MIT course (Prof. Strang)
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm
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Review Outline 

▪ Part I:

▪ Linear combination

▪ Linear independence

▪ Vector space

▪ Part II:

▪ Column space/Null space

▪ Matrix  rank

▪ Solution space of Ax = b

▪ Part III

▪ Inner product

▪ Simple geometric sets

▪ Quadratic sets
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Key Concept: Linear Combination

▪ Linear combination of two vectors 𝑣1, 𝑣2 ∈ 𝑅2

▪ Linear combination of 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑅𝑛
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Key Concept: Linear Combination

▪ Trivial and nontrivial linear combination: 

▪ Span of a set of vectors:
𝑠𝑝𝑎𝑛 𝑣1, 𝑣2, … , 𝑣𝑘 = 𝑤 ∈ 𝑅𝑛: 𝑤 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑘𝑣𝑘 , for some scalars 𝛼1, 𝛼2, … , 𝛼𝑘
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Linear Independence

▪ Two vectors {𝑣1, 𝑣2} are linearly dependent if 

▪ A set of vectors 𝑣1,⋯ , 𝑣𝑘 is linearly independent if 

No nontrivial linear combination = 0

▪ Equivalent definition: No vector 𝑣𝑖 can be expressed as a linear combination of other 
vectors 𝑣1,⋯ , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑛
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Vector Space

▪ Vector space 𝑽: set of elements for which “addition” and “multiplication by scalers” 
can be properly defined 

▪ element can be number, matrix, function, symbols … 

▪ “Addition” and “multiplication” can be defined as long as they satisfy certain Axioms. 

▪ Subspace of a vector space 𝑉:  subset of 𝑉 that is “closed” under addition and 
multiplication  

▪ Span (𝑣1, 𝑣2) :

▪ 𝑅+
2 = 𝑥 ∈ 𝑅2: 𝑥1 ≥ 0 , 𝑥2 ≥ 0 :
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Vector Space

▪ 𝑣1, 𝑣2, … , 𝑣𝑘 is a basis for a vector space 𝑉 if

1. 𝑉 = 𝑠𝑝𝑎𝑛 𝑣1, 𝑣2, … , 𝑣𝑘

2. 𝑣1, 𝑣2, … , 𝑣𝑘 is linearly independent

▪ Dimension of a vector space: 

▪ Number of vectors in a basis

▪ Fact: number of vectors in any basis of a finite-dim vector space is the same
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Vector Space

▪ Coordinates of 𝑤 ∈ 𝑉 with respect to a basis 𝑣1, 𝑣2, … , 𝑣𝑘

▪ Coordinates of a vector depend on the basis 
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Review Outline 

▪ Part I:

▪ Linear combination

▪ Linear independence

▪ Vector space

▪ Part II:

▪ Column space/Null space

▪ Matrix  rank

▪ Solution space of Ax = b

▪ Part III

▪ Inner product

▪ Simple geometric sets

▪ Quadratic sets
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Key: Matrix vector multiplication as mixture of columns

▪ Let 𝑦 = 𝐴𝑥, then 𝑦 is a linear combination of the columns of 𝐴
▪ Write matrix A in terms of its columns

𝐴 = 𝑎1 𝑎2 … 𝑎𝑛 ,  where 𝑎𝑗 ∈ 𝑅𝑚

▪ Then 𝑦 = 𝐴𝑥 can be written as

▪ Similarly, if 𝑧 = 𝑑𝐵 , where 𝑑 and 𝑧 are row vectors, then 𝑧 is a linear combination 
of the rows of B
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Column Space (Range) of a Matrix 𝑨 ∈ 𝑹𝒎×𝒏

Col A = Range 𝐴 = { 𝐴𝑥 | 𝑥 ∈ 𝑅𝑛} ⊂ 𝑅𝑚

▪ = Span of columns of 𝑨

▪ Example: 𝐴 = 
1 2 1
1 0 −1
−1 0 1
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Null Space of a Matrix 𝑨 ∈ 𝑹𝒎×𝒏

𝑁𝑢𝑙𝑙 𝐴 = 𝑥 ∈ 𝑅𝑛|𝐴𝑥 = 0

▪ Coefficients of linear combinations that result in a zero vector

▪ Zero null space implies: columns of 𝐴 are independent 

▪ Example of null space: 𝐴 = 
1 2 1
1 0 −1
−1 0 1
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Rank of a matrix 𝑨 ∈ 𝑹𝒎×𝒏

▪ Definition: 𝑟𝑎𝑛𝑘 𝐴 = dim(Col 𝐴 )

▪ i.e. number of independent columns of 𝐴

▪ Nontrivial facts

▪ 𝑟𝑎𝑛𝑘 𝐴 = 𝑟𝑎𝑛𝑘 𝐴𝑇

▪ 𝑟𝑎𝑛𝑘 𝐴 ≤ min 𝑚, 𝑛 :  full rank means rank(A) = min(m,n)

▪ r𝑎𝑛𝑘 𝐴 + dim 𝑁𝑢𝑙𝑙 𝐴 = 𝑛

▪ “conservation of dimension”: Think about 𝐴 as a linear mapping that maps 𝑥 ∈ 𝑅𝑛 to a 
vector 𝑦 = 𝐴𝑥 ∈ 𝑅𝑚. Each dimension of input 𝑥 is either crushed to zero or ends up in 
output
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Example of “conservation of dimension”: 

▪ Find the 𝑁𝑢𝑙𝑙 𝐴 , where 𝐴 ∈ 𝑅10×4 = [𝑎1 𝑎2 𝑎3 𝑎4] satisfies 

① 𝑎2 = 2𝑎1 + 5𝑎3

② 𝑎4 = 5𝑎1 − 6𝑎3
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Linear Equation 𝑨𝒙 = 𝒃,  𝒙 ∈ 𝑹𝒏, 𝒃 ∈ 𝑹𝒎

▪ There exists a solution if 

▪ There always exists a solution for any 𝑏 ∈ 𝑅𝑚 if: 

▪ There exists a unique solution if:
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Review Outline 

▪ Part I:

▪ Linear combination

▪ Linear independence

▪ Vector space

▪ Part II:

▪ Column space/Null space

▪ Matrix  rank

▪ Solution space of Ax = b

▪ Part III

▪ Inner product

▪ Simple geometric sets

▪ Quadratic sets

18



Geometry and linear algebra

▪ Points , angles, lines, planes, convex sets, cones, polytopes, balls, ellipsoids

▪ Numerical representation of the same geometrical or physical quantity changes with the 
coordinate system

▪ Most of them can be generalized to 𝑅𝑛 or even general vector space
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Key Geometric Quantity: Inner Product

▪ Inner product <⋅,⋅>∶ 𝑉 × 𝑉 → 𝑅:   

▪ maps each pair in a vector space to a scaler 

▪ Satisfies several key properties: linearity, conjugate, positive definiteness …

▪ Inner product of vectors in 𝑅𝑛:    < 𝑣,𝑤 > =

▪ Inner product of matrices in 𝑅𝑚×𝑛:  < 𝐴,𝐵 > =

▪ Inner product of two functions 𝑓, 𝑔 on interval 𝑎, 𝑏 :
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Key Geometric Quantity: Inner Product

▪ Inner product defines important geometric notions: 

▪ Norm: 

▪ Angle

▪ Orthogonality 
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Some Simple Geometric Sets

▪ Line and line segment: given 𝑥1 ≠ 𝑥2 ∈ 𝑅𝑛: 
𝑦 = 𝜃𝑥1 + 1 − 𝜃 𝑥2

▪ Hyperplanes: 𝑥: 𝑎𝑇𝑥 = 𝑏

▪ Halfspaces: 𝑥: 𝑎𝑇𝑥 ≤ 𝑏
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Some Simple Geometric Sets

▪ Convex set: A set 𝑆 is called convex if 
𝑥1, 𝑥2 ∈ 𝑆 ⇒ 𝛼𝑥1 + 1 − 𝛼 𝑥2 ∈ 𝑆

▪ Convex combination of 𝑥1, … , 𝑥𝑘 ∈ 𝑅𝑛

𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑘𝑥𝑘: 𝛼𝑖 ≥ 0,∑𝛼𝑖 = 1

▪ Convex hull 𝑐𝑜 𝑆 : set of all convex combinations of points in 𝑆
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Some Simple Geometric Sets

▪ Cone: A set 𝑆 is called a cone if 𝑥 ∈ 𝑆 ⇒ 𝜆𝑥 ∈ 𝑆, ∀𝜆 ≥ 0

▪ Conic combination of 𝑥1, … , 𝑥𝑘 ∈ 𝑅𝑛

𝑐𝑜𝑛𝑒 𝑥1, … , 𝑥𝑘 = 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑘𝑥𝑘: 𝛼𝑖 ≥ 0
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Some Simple Geometric Sets

▪ (Convex) Polyhedron: intersection of a finite number of half spaces 
𝑃 = 𝑥 ∶ 𝐴𝑥 ≤ 𝑏

▪ Polyhedral cone: intersection of finitely many halfspaces that contain the origin:
𝑃 = 𝑥 ∶ 𝐴𝑥 ≤ 0

▪ Polytope: bounded polyhedron
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Some Simple Geometric Sets

▪ Polyhedron: intersection of a finite number of half spaces 𝑃 = 𝑥 ∶ 𝐴𝑥 ≤ 𝑏

▪ Polyhedron (vertex representation):

𝑃 = 𝑐𝑜 𝑣1, … , 𝑣𝑚 ⊕ 𝑐𝑜𝑛𝑒 𝑟1, … , 𝑟𝑞
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Symmetric Matrix

▪ Symmetric: 𝐴 = 𝐴𝑇

▪ Key property: Spectral decomposition

𝐴 is symmetric  ⇔ 𝐴 = 𝑄Λ𝑄𝑇, where 𝐴 is diagonal and 𝑄 is unitary
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Positive Semi-definite Matrices

▪ Positive semidefinite: 𝑥𝑇𝐴𝑥 ≥ 0, ∀𝑥 ∈ 𝑅𝑛

▪ PSD matrices define sign-definite quadratic forms: 

▪ Examples: 
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Positive Semi-definite Matrices

▪ Equivalent Definitions of PSD Matrices:

▪ All 2n − 1 leading principal minors are nonnegative

▪ All eigs are nonnegative 

▪ There exists a factorization 𝐴 = 𝐵𝑇𝐵 with 𝐵 square and nonsingular

▪ If 𝑃 is positive definite, then 𝑃−1 is also positive definite
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▪ Euclidean balls:  𝐵 𝑥𝑐 , 𝑟 = 𝑥: 𝑥 − 𝑥𝑐 2 ≤ 𝑟

or 𝐵 𝑥𝑐 , 𝑟 = 𝑥𝑐 + 𝑟𝑢 ∶ 𝑢 2 ≤ 1

▪ Euclidean ellipsoids: 𝐸 = 𝑥: 𝑥 − 𝑥𝑐
𝑇𝑃−1 𝑥 − 𝑥𝑐

or 𝐸 = 𝑥𝑐 + 𝐴𝑢 ∶ 𝑢 2 ≤ 1
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