MEE524 Modern Control and Estimation

LN1: Linear Algebra Review

Prof. Wei Zhang

Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Why Linear Algebra:

- One of the most important tools for modern control theory
- Topics covered in this class, such as
 - State space model
 - Least squares
 - Stability analysis
 - Controller/observer design through eigenvalue assignment
 - Linear quadratic regulator (LQR)
 - Kalman filter

can be viewed as applications of linear algebra

• Crucial for machine learning, robotics, computer vision, ...

Facts about the students:

- Remember formulas without deep understanding of concepts
- Good at numerical calculations, but not analytical analysis

Goal:

- Not to recall the formulas or numerical techniques
- Review/rebuild fundamental concepts
- "Speak" the language of linear algebra: formulate/analyze/solve linear algebra problems without using formulas or numbers
 - Linear independence
 - Matrix rank
 - Vector space
 - Column space/null space
 - Solution Ax = b

 Just a short review. A good reference is the MIT course (Prof. Strang) https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm

Review Outline

Part I:

- Linear combination
- Linear independence
- Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets

Key Concept: Linear Combination

• Linear combination of two vectors $v_1, v_2 \in \mathbb{R}^2$

• Linear combination of $v_1, v_2, ..., v_k \in \mathbb{R}^n$

Key Concept: Linear Combination

• Trivial and nontrivial linear combination:

• Span of a set of vectors: $span(v_1, v_2, ..., v_k) = \{w \in \mathbb{R}^n : w = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k, \text{ for some scalars } \alpha_1, \alpha_2, \dots, \alpha_k\}$

Linear Independence

• Two vectors {*v*₁, *v*₂} are **linearly dependent** if

 A set of vectors {v₁, ..., v_k} is linearly independent if No nontrivial linear combination = 0

Equivalent definition: No vector v_i can be expressed as a linear combination of other vectors v₁, …, v_{i-1}, v_{i+1}, …, v_n

Vector Space

- Vector space V: set of elements for which "addition" and "multiplication by scalers" can be properly defined
 - element can be number, matrix, function, symbols ...
 - "Addition" and "multiplication" can be defined as long as they satisfy certain Axioms.
- **Subspace** of a vector space *V*: subset of *V* that is "closed" under addition and multiplication

• Span (v_1, v_2) :

• $R_+^2 = \{x \in R^2 : x_1 \ge 0 , x_2 \ge 0\}$:

Vector Space

- {v₁, v₂, ..., v_k} is a basis for a vector space V if
 I. V = span({v₁, v₂, ..., v_k})
- *2.* $\{v_1, v_2, \dots, v_k\}$ is linearly independent

- Dimension of a vector space:
- Number of vectors in a basis
- Fact: number of vectors in any basis of a finite-dim vector space is the same

Vector Space

• Coordinates of $w \in V$ with respect to a basis $\{v_1, v_2, ..., v_k\}$

Coordinates of a vector depend on the basis

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets

Key: Matrix vector multiplication as mixture of columns

- Let y = Ax, then y is a linear combination of the columns of A
 - Write matrix A in terms of its columns

 $A = [a_1 \quad a_2 \quad \dots \quad a_n], \text{ where } a_j \in R^m$

• Then y = Ax can be written as

• Similarly, if z = dB, where *d* and *z* are row vectors, then *z* is a linear combination of the rows of B

Column Space (Range) of a Matrix $A \in \mathbb{R}^{m \times n}$ Col(A) = Range(A) = { $Ax \mid x \in \mathbb{R}^n$ } $\subset \mathbb{R}^m$

Span of columns of A

• Example:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Null Space of a Matrix $A \in \mathbb{R}^{m \times n}$

 $Null(A) = \{x \in R^n | Ax = 0\}$

- Coefficients of linear combinations that result in a zero vector
- Zero null space implies: columns of *A* are independent

• Example of null space:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Rank of a matrix $A \in \mathbb{R}^{m \times n}$

- Definition: rank(A) = dim(Col(A))
 - i.e. number of independent columns of *A*
- Nontrivial facts
 - $rank(A) = rank(A^T)$

• $rank(A) \le min(m, n)$: full rank means rank(A) = min(m, n)

- rank(A) + dim(Null(A)) = n
 - "conservation of dimension": Think about *A* as a linear mapping that maps *x* ∈ *Rⁿ* to a vector *y* = *Ax* ∈ *R^m*. Each dimension of input *x* is either crushed to zero or ends up in output

Example of "conservation of dimension":

- Find the *Null*(*A*), where $A \in R^{10 \times 4} = [a_1 \ a_2 \ a_3 \ a_4]$ satisfies (1) $a_2 = 2a_1 + 5a_3$
- (2) $a_4 = 5a_1 6a_3$

Linear Equation Ax = b, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$

• There exists a solution if

• There always exists a solution for any $b \in \mathbb{R}^m$ if:

• There exists a unique solution if:

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets

Geometry and linear algebra

• Points , angles, lines, planes, convex sets, cones, polytopes, balls, ellipsoids

Numerical representation of the same geometrical or physical quantity changes with the coordinate system

• Most of them can be generalized to *R*^{*n*} or even general vector space

Key Geometric Quantity: Inner Product

- Inner product $\langle \cdot, \cdot \rangle : V \times V \to R$:
 - maps each pair in a vector space to a scaler
 - Satisfies several key properties: linearity, conjugate, positive definiteness ...
- Inner product of vectors in \mathbb{R}^n : $\langle v, w \rangle =$

• Inner product of matrices in $\mathbb{R}^{m \times n}$: $\langle A, B \rangle =$

Inner product of two functions f, g on interval [a, b]:

Key Geometric Quantity: Inner Product

- Inner product defines important geometric notions:
 - Norm:

Angle

Orthogonality

• Line and line segment: given $x_1 \neq x_2 \in \mathbb{R}^n$: $y = \theta x_1 + (1 - \theta) x_2$

• Hyperplanes: $\{x: a^T x = b\}$

• Halfspaces: $\{x: a^T x \le b\}$

• Convex set: A set *S* is called convex if $x_1, x_2 \in S \Rightarrow \alpha x_1 + (1 - \alpha) x_2 \in S$

• Convex combination of
$$x_1, \dots, x_k \in \mathbb{R}^n$$

 $\{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k : \alpha_i \ge 0, \sum \alpha_i = 1\}$

Convex hull co(S): set of all convex combinations of points in S

• Cone: A set *S* is called a cone if $x \in S \Rightarrow \lambda x \in S$, $\forall \lambda \ge 0$

• Conic combination of $x_1, \dots, x_k \in \mathbb{R}^n$ $cone(x_1, \dots, x_k) = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k : \alpha_i \ge 0\}$

(Convex) Polyhedron: intersection of a finite number of half spaces
 P = {x : Ax ≤ b}

• **Polyhedral cone**: intersection of finitely many halfspaces that contain the origin: $P = \{x : Ax \le 0\}$

• **Polytope**: bounded polyhedron

• Polyhedron: intersection of a finite number of half spaces $P = \{x : Ax \le b\}$

Polyhedron (vertex representation):

$$P = \overline{co}(v_1, \dots, v_m) \oplus cone(r_1, \dots, r_q)$$

Symmetric Matrix

• Symmetric: $A = A^T$

• Key property: **Spectral decomposition**

A is symmetric $\Leftrightarrow A = Q\Lambda Q^T$, where *A* is diagonal and *Q* is unitary

Positive Semi-definite Matrices

- Positive semidefinite: $x^T A x \ge 0$, $\forall x \in \mathbb{R}^n$
- PSD matrices define sign-definite quadratic forms:
 - Examples:

Positive Semi-definite Matrices

- Equivalent Definitions of PSD Matrices:
 - All 2ⁿ − 1 leading principal minors are nonnegative
 - All eigs are nonnegative
 - There exists a factorization $A = B^T B$ with *B* square and nonsingular

• If *P* is positive definite, then *P*⁻¹ is also positive definite

• Euclidean balls: $B(x_c, r) = \{x: ||x - x_c||_2 \le r\}$ or $B(x_c, r) = \{x_c + ru: ||u||_2 \le 1\}$

• Euclidean ellipsoids: $E = \{x: (x - x_c)^T P^{-1} (x - x_c)\}$

or $E = \{x_c + Au : ||u||_2 \le 1\}$