MEE524 Modern Control and Estimation

LN1: Linear Algebra Review

Prof. Wei Zhang

Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

> > 1

Why Linear Algebra:

- One of the most important tools for modern control theory
- Topics covered in this class, such as
 - State space model
 - Least squares
 - Stability analysis
 - Controller/observer design through eigenvalue assignment
 - Linear quadratic regulator (LQR)
 - Kalman filter

can be viewed as applications of linear algebra

• Crucial for machine learning, robotics, computer vision, ...

Facts about the students:

- Remember formulas without deep understanding of concepts
- Good at numerical calculations, but not analytical analysis

Goal:

- Not to recall the formulas or numerical techniques
- Review/rebuild fundamental concepts
- "Speak" the language of linear algebra: formulate/analyze/solve linear algebra problems without using formulas or numbers
 - Linear independence
 - Matrix rank
 - Vector space
 - Column space/null space
 - Solution Ax = b

Just a short review. A good reference is the MIT course (Prof. Strang)
 <u>https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm</u>

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets

Key Concept: Linear Combination

• Linear combination of two vectors $v_1, v_2 \in \mathbb{R}^2$

• Linear combination of
$$v_1, v_2, ..., v_k \in \mathbb{R}^n$$

 $\mathcal{W} = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k \mathcal{U}_k, \quad \text{for some so-scalars}$
 $\alpha_1, \alpha_2, \cdots, \alpha_k \in \mathbb{R}$

Key Concept: Linear Combination

Trivial and nontrivial linear combination: $W = \alpha_1 V_1 + \alpha_2 V_2 + \cdots + \alpha_k V_k$ is called trivial if $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ [nontrivial otherwise (i.e. at least on Niteo) one Vito) • Span of a set of vectors: $span(v_1, v_2, ..., v_k) \stackrel{\checkmark}{=} \{ w \in \mathbb{R}^n : w = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k, \text{ for some scalars } \alpha_1, \alpha_2, \dots, \alpha_k \}$ = set of all linear combinations of VI, ..., UK eg. span([']) = $\int [\alpha'], \alpha \in \mathbb{R}$ $\operatorname{Span}([1], [-1]) = \left\{ \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$ $Span([!],[!]) = \mathbb{R}^2$

Linear Independence

• Two vectors $\{v_1, v_2\}$ are linearly dependent if $V_1 = \alpha V_2$, for some $\alpha \in \mathbb{R}$

• A set of vectors $\{v_1, \dots, v_k\}$ is linearly **independent** if No nontrivial linear combination = 0

$$\partial_1 v_1 + \partial_2 v_2 + \cdots + \partial_k v_k = 0 \implies \partial_1 = \partial_2 \cdots = \partial_k = 0$$

independence

• Equivalent definition: No vector v_i can be expressed as a linear combination of other vectors $v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n$

Vector Space

- Vector space V: set of elements for which "addition" and "multiplication by scalers" can be properly defined
 - element can be number, matrix, function, symbols ... set of $2x_2$ matrices $set of <math>2x_2$ matrices $set of <math>2x_2$ matrices $set of <math>4x_2$ matrices
 - "Addition" and "multiplication" can be defined as long as they satisfy certain Axioms.
 - Linear combination is well defined , stays in the space
- Subspace of a vector space V: subset of V that is "closed" under addition and multiplication i.e. subset of V for which linear cambination stays is ide the set subspace must contain "o", because ves, oves

$$R_{+}^{2} = \{x \in R^{2} : x_{1} \geq 0, x_{2} \geq 0\}:$$
Not subspace

V, E|R+2 but -V, & 1R+2

must be long to

Wei Zhang

CLEAR Lab @ SUSTech

Vector Space

- { v_1 , v_2 , ..., v_k } is a basis for a vector space *V* if
- V is a tolinear combination of y..., ye 1. $V = span(\{v_1, v_2, \dots, v_k\})$, for any VEV,
- *2.* $\{v_1, v_2, \dots, v_k\}$ is linearly independent \mathbb{R}^2 $\{[0], [1]\}$ is a basis $\binom{1}{0}, \binom{1}{1}, \binom{1}{2}$ is Not a basis $\binom{1}{1}$ satisfies 1 of a vector space:
- Dimension of a vector space:
- Number of vectors in a basis
- Fact: number of vectors in any basis of a finite-dim vector space is the same

Vector Space

• Coordinates of $w \in V$ with respect to a basis $\{v_1, v_2, \dots, v_k\} \notin V$

$$we must \qquad w = \alpha_{1}v_{1} + \cdots + \alpha_{k}v_{k} \quad \text{for some } \alpha_{1} \cdots \alpha_{k} \quad w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad e_{1} \quad w \\ e_{1} \quad e_{1} \quad e_{2} \quad e_{1} \quad e_{2} \quad e_{1} \quad e_{2} \quad$$

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets

• Similarly, if z = dB, where *d* and *z* are row vectors, then *z* is a linear combination of the rows of B

Column Space (Range) of a Matrix $A \in \mathbb{R}^{m \times n}$

$$Col(A) = Range(A) = \{Ax \mid x \in R^n\} \subset R^m \quad A=[a..., a_n]$$

= Span of columns of
$$A = Span(a_1, \dots, a_n)$$

.

.

• Example:
$$A = \begin{bmatrix} 1 & (2 & 1) \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $Cd(A) = Span(a, a_2, a_3)$
 $a_1 & a_2 & a_3 = Span(a, a_2)$
 $a_1fa_3 - a_2 = 0 = span(a, a_3)$

Null Space of a Matrix $A \in \mathbb{R}^m$

$$Null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$$
 subspace of

 $f IR^{n}$ $A \in IR^{10\times 2}$ $N_{u}((A) \in IR^{2})$

- Coefficients of linear combinations that result in a zero vector
- Zero null space implies: columns of *A* are independent
- Example of null space: $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$, what is Null space. a, az az $A_2 = a_1 + a_3 \implies a_1 - a_2 + a_3 = 0$ $= \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = 0$ Nall(A) = span([-i])

Rank of a matrix $A \in \mathbb{R}^{m \times n}$

- Definition: rank(A) = dim(Col(A))
 - i.e. number of independent columns of *A*
- Nontrivial facts

•
$$rank(A) = rank(A^T)$$
, # of indep columns of $A = #$ of indep rows of A

- $rank(A) \le min(m, n)$: full rank means rank(A) = min(m, n)
- $\underbrace{\texttt{Hoftota}(}_{Columns} = \underbrace{\texttt{H}}_{Columns} = \underbrace{\texttt{H}}_{V} = \underbrace{\texttt{H}}_{$ # of indep columns • rank(A) + dim(Null(A)) = n
 - "conservation of dimension": Think about *A* as a linear mapping that maps $x \in \mathbb{R}^n$ to a vector $y = Ax \in \mathbb{R}^m$. Each dimension of input x is either crushed to zero or ends up in output $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} \qquad A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 \\ a_2 & a_3 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 \\ a_1 & a_2 & a_3 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 & a_3 \\ a_1 & a_2 & a_3 & a_3 & a_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_3 & a_3 \\ a_1 & a_2 & a_3 & a_3 & a_3 & a_3 \\ a_1 & a_2 & a_3 & a_3$

Wei Zhang

CLEAR Lab @ SUSTech

1 1

Example of "conservation of dimension":

To find null space: from ()
$$\Rightarrow 2a_1 - a_2 + 5a_3 + 0 \cdot a_4 = 0$$

 $A\begin{bmatrix} 2\\-1\\5 \end{bmatrix} = 0$
 $A\begin{bmatrix} 2\\-1\\5 \end{bmatrix} = 0$
 $eNull(A)$
 $eNull(A)$
 $\Rightarrow Null(A) = span(\begin{bmatrix} 2\\-1\\5 \end{bmatrix}, \begin{bmatrix} 5\\-0\\-1\\-0\\-1 \end{bmatrix})$

 $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ Linear Equation Ax = b, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^n$ • There exists a solution if $() \operatorname{rank}(A) \neq o$ (2) $b \notin Null(A^T)$ (3) $rank(b) \leq min(n,m)$ AXZb $b \in col(A)$ $c_{i}(A) = span([])$ • There always exists a solution for any $b \in R^m$ if: - $\mathbb{R}^m \subseteq \mathrm{col}(A)$, $\mathrm{col}(A) = \mathrm{span}(a_1, \dots, a_n) = \mathbb{R}^m$ + 1R² 623 - rank (A)= M suppose • There exists a unique solution if: X_1 , X_2 are both solutions $AX_1 = b$, $AX_2 = b$ $- \int b \in c_{2}(A)$ $\int M_{all}(A) = \{0\}$ \Rightarrow A($\alpha_1 - \alpha_2$)=0 or (becollA) columns + A indep unique =) XI=XZ always No nontrivial RI-XL such that A(XI-XI)=> $(=) \operatorname{mank}(A) = n$ =) Null (A) = fo} 17 CLEAR Lab @ SUSTech Wei Zhana

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Simple geometric sets
 - Quadratic sets