Fall 2021 ME424 Modern Control and Estimation

Lecture Note 2 State Space Models

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

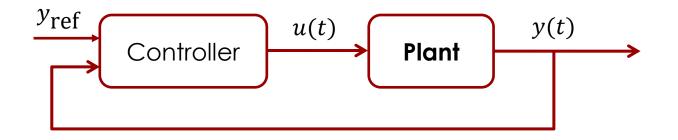
> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- State space model ↔ transfer function

State-space model based feedback control system:

• Goal: determine control input to achieve desired output



- Controller design is based on plant model
 - Model is different from the actual plant
 - "all models are wrong, but some are useful"
- Modeling approach:
 - First principle
 - Data driven (System ID)

- Static vs. Dynamic Systems
 - Static system

- *u*(*t*) completely and immediately determines *y*(*t*)
- Desired output y_{ref} can be perfectly tracked (in absence of disturbance) by open-loop plant inversion

- Static vs. Dynamic Systems
 - **Dynamic system:** differential or difference equation

$$u(t)$$
 ODE (y, u) $y(t)$

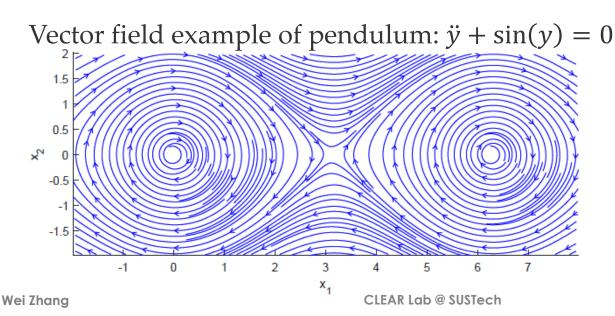
- u(t) does not fully determines y(t)
- At time t_0 , the output $y(t_0)$ does not fully captures the system "behavior"

- "State": info needed for future evolution, it separates future from past
- State x(t₀) at time t₀ and input u(t) over time [t_o, t_f], completely determines the system behaviors

General continuous-time state space model

 $\dot{x} = f(x, u)$ y = h(x, u)

- $x \in \mathbb{R}^n$ state vector, $u \in \mathbb{R}^m$ control input, $y \in \mathbb{R}^p$ output,
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$: called **vector field**
- $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$: output function
- Called autonomous system if there is no control f(x, u) = f(x)
- For autonomous sys, $\hat{x} \in \mathbb{R}^n$ is called **equilibrium** if $f(\hat{x}) = 0$



General discrete-time state space model

 $\begin{aligned} x(k+1) &= f(x(k), u(k)) \\ y(k) &= h(x(k), u(k)) \end{aligned}$

- $x \in \mathbb{R}^n$ state vector, $u \in \mathbb{R}^m$ control input, $y \in \mathbb{R}^p$ output
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$: state update equation
- $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$: output function
- Called autonomous system if there is no control f(x, u) = f(x)
- For autonomous sys, $\hat{x} \in \mathbb{R}^n$ is called **equilibrium** if $\hat{x} = f(\hat{x})$
- Discrete-time system:
 - Some discrete-time system is obtained from continuous time model by sampling
 - Some systems naturally evolve in discrete time.

• Linear Systems: system is called linear if:

Continuous time
$$\dot{x} = f(x, u) = Ax + Bu,$$

 $y = h(x, u) = Cx + Du,$

Discrete time

$$x(k+1) = f(x(k), u(k)) = Ax(k) + Bu(k),$$

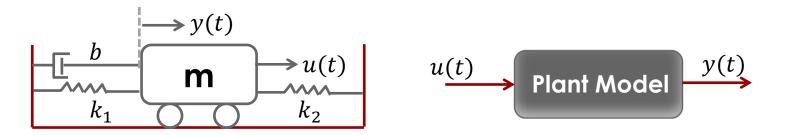
 $y(k) = h(x(k), u(k)) = Cx(k) + Du(k),$

for some matrices A, B, C, D

State-space modeling:

- Find the functions $f(\cdot, \cdot), h(\cdot, \cdot)$
- Or find *A*, *B*, *C*, *D* matrices if the system is linear

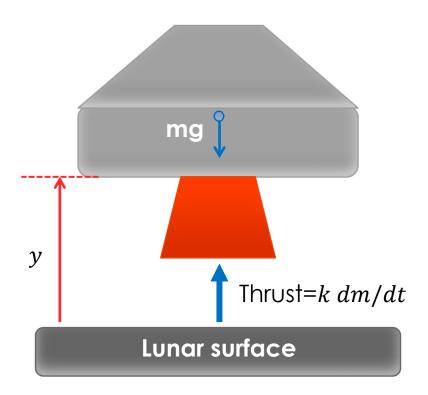
Example 1: Consider spring-damper cart system with zero initial conditions (initially at y = 0 and not moving). No friction



Differential equation model

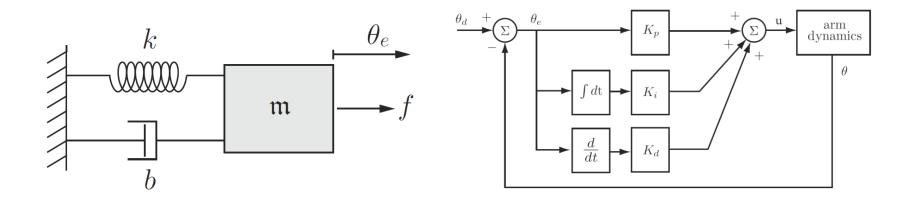
• State space model of Example 1 (infinitely many)

• Example 2: soft landing of a lunar module, $u = \frac{dm}{dt}$



- Example 3: Sensor Network
 - Each iteration, exchange measurements with neighbors
 - The updated value is the average of its own value with the neighbors

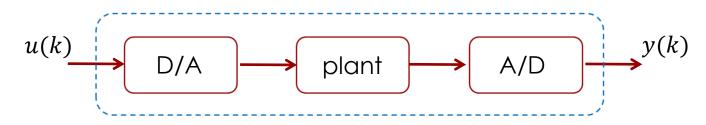
• Example 4: PID for spring-damper system



Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- State space model ↔ transfer function

From continuous time to discrete time model



- Approximate differential equation with difference equation
 - Euler forward rule:

From continuous-time to discrete-time model

• General nonlinear case:

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

From continuous-time to discrete-time model

• Linear case:

$$\dot{x} = A_c x + B_c u,$$

$$y = C_c x + D_c u,$$

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- State space model ↔ transfer function

From nonlinear to linear

- Given model: x(k + 1) = f(x(k), u(k)), y(k) = h(x(k), u(k)) and operating point: (\hat{x}, \hat{u})
- Goal: find a linearized model around (\hat{x}, \hat{u})

• Jacobian matrix of multivariable function $f: \mathbb{R}^n \to \mathbb{R}^m$

• Example of Jacobian matrix:
$$f(z) = \begin{bmatrix} 2z_1 + e^{z_2} \\ \log(z_3) + \frac{1}{z_2} \end{bmatrix}, \hat{z} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Taylor expansion of multivariate function

L

• General expression: $f(z) = f(\hat{z}) + \left(\frac{\partial f}{\partial z}(z)\Big|_{z=\hat{z}}\right)\Delta z + \text{H.O.T}$

• Linearization around (\hat{x}, \hat{u}) using Taylor expansion:

$$f(x,u) \approx f(\hat{x},\hat{u}) + \left(\frac{\partial f(x,u)}{\partial x}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (x-\hat{x}) + \left(\frac{\partial f(x,u)}{\partial u}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (u-\hat{u})$$
$$= \hat{A} \cdot \Delta x + \hat{B} \cdot \Delta u + f(\hat{x},\hat{u})$$

$$h(x,u) \approx h(\hat{x},\hat{u}) + \left(\frac{\partial h(x,u)}{\partial x}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (x-\hat{x}) + \left(\frac{\partial h(x,u)}{\partial u}\Big|_{x=\hat{x},u=\hat{u}}\right) \cdot (u-\hat{u})$$

$$\Delta x$$

$$\hat{D}$$

$$\Delta u$$

$$\Delta y \coloneqq y - h(\hat{x}, \hat{u}) \approx \hat{C} \cdot \Delta x + \hat{D} \cdot \Delta u$$

• Example:
$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} \sin(x_2(k)) + \cos(u_2(k)) \\ x_1(k)x_2(k) + u_1u_2(k) \end{bmatrix}$$

 $y(k) = \cos(x_2(k)) + 2x_1(k)$ $\hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \hat{u} = \begin{bmatrix} 0 \\ \frac{\pi}{2} \end{bmatrix}$

Outline

- State space model: definition and examples
- From continuous-time to discrete time model
- From nonlinear to linear model
- State space model ↔ transfer function

From state space to transfer function

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

• Let X(z), U(Z), Y(z) be the z-transforms of x(k), u(k), y(k)

• z-transform:
$$X(z) \triangleq \sum_{k=0}^{\infty} x(k) z^{-k}$$

From state space to transfer function

$$x(k + 1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

• Recall: if $x(k) \leftrightarrow X(z)$, then $x(k+1) \leftrightarrow zX(z) - zx(0)$

- From transfer function to state space model
 - **Realization problem**: given transfer function *H*(*z*), find (*A*, *B*, *C*, *D*)

• Single-input-single-output system:

$$H(z) = \frac{b_n z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0}{z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$$

- Procedure:
 - First write the transfer function in the above canonical form
 - One possible realization is:

• Example: y(k + 1) + 3y(k - 2) = 2u(k - 1)

First find transfer function: