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▪ Last lecture: obtain discrete-time linear state space model from 

▪ physical process

▪ given continuous time state space model

▪ given nonlinear state space model

▪ given discrete time transfer function

▪ The goal of this lecture note:

▪ learn how to build model based on observed input-output data pairs

▪ General case beyond the scope of this course

▪ Focus on special case, where first obtain transfer function model from 
input-output data pairs, and then obtain the corresponding state space 
model

▪ Main method: Least Squares
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Least-Squares Problem Formulation:

▪ Measurement  Equation:
𝑦 = 𝑔 𝜃 + 𝑣

▪ 𝑦 ∈ 𝑅𝑚: measurements data

▪ 𝜃 ∈ Θ ⊆ 𝑅𝑛: parameter to be estimated, where Θ is the constraint set 
for feasible parameters 

▪ 𝑣 ∈ 𝑅𝑚: unknown measurement noise

▪ 𝑔: 𝑅𝑛 → 𝑅𝑚: known (possibly) nonlinear function relates 𝜃 with 
measurement 𝑦
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Least-Squares Problem Formulation:

▪ Problem Statement: Find the best parameter in the constraint set 
Θ that minimizes the difference between the model and the 
measured data

min
𝜃∈Θ

𝐽 𝜃 = min
𝜃∈Θ

𝑦 − 𝑔 𝜃
2

▪ Linear Least Squares: 𝑔 𝜃 = 𝐻𝜃, where 𝐻 ∈ 𝑅𝑚×𝑛 is a given 
deterministic matrix
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Optimization of multivariable function

▪ 1st –order necessary condition for optimality of 𝐽(𝜃)

▪ Matrix calculus:

▪ If  𝑓: R𝑛 → 𝑅𝑚, then 
𝜕𝑓

𝜕𝑥
x = 𝐷𝑓 𝑥 =
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Optimization of multivariable function

▪ Gradient: For scaler valued multivariate function 𝑓: 𝑅𝑛 → 𝑅, its 
gradient is defined as: 

▪ For 𝑓: 𝑅𝑛 → 𝑅, notational convention ∇𝑓 𝑥 =
𝜕𝑓

𝜕𝑥
𝑥

𝑇

▪ Some references use 
𝜕𝑓

𝜕𝑥
to denote gradient

▪ Directional derivative: 𝐷𝑓 𝑥; 𝑑 = lim𝛼→0
𝑓 𝑥+𝛼𝑑 −𝑓 𝑥

ℎ
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▪ Some calculus examples: 

▪ 𝑓 𝑥 = 𝐴𝑥

▪ 𝑓 𝑥 = 𝑥𝑇𝐴 𝑥

▪ Exercise: compute 
𝜕𝑓

𝜕𝑥
(𝑥), where 𝑥 ∈ 𝑅𝑛, and 𝑓 𝑥 = 𝑥𝑇𝑥 ⋅ 𝑥
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▪ Derivation of linear least square solutions

▪ Normal equation:
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▪ Solution with full rank 𝐻
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▪ Geometric interpretation of linear least squares
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▪ Linear Least Squares Example:

▪ Assume 𝑦 = 𝛼𝑥 + 𝛽

14

𝒊 𝟏 𝟐 𝟑 𝟒 5

𝒙 1 0.5 −2 3 2.5

𝒚 1.4 1.2 −3.6 6.8 4.5
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▪ Change hypothesis, assume 𝑦 = 𝑏𝑒𝑎𝑥
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▪ Change hypothesis, assume that 
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𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2
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Application to System Identification for Linear Systems

▪ ARX(𝑝, 𝑞) model :(Autoregressive with exogenous input)
𝑦 𝑘 + 𝛼1𝑦 𝑘 − 1 +⋯+ 𝛼𝑝𝑦 𝑘 − 𝑝

= 𝛽0𝑢 𝑘 + 𝛽1𝑢 𝑘 − 1 +⋯+ 𝛽𝑞𝑢 𝑘 − 𝑞 + 𝑣(𝑘)

▪ 𝑣(𝑘) : noise signal

▪ Model parameter: 𝜃 = 𝛼1, … , 𝛼𝑝, 𝛽0, 𝛽1, … , 𝛽𝑞
𝑇

▪ One-step predictor: 
ො𝑦 𝑘|𝜃 = −𝛼1𝑦 𝑘 − 1 −⋯− 𝛼𝑝𝑦 𝑘 − 𝑝

+𝛽0𝑢 𝑘 + 𝛽1𝑢 𝑘 − 1 +⋯+ 𝛽𝑞𝑢 𝑘 − 𝑞
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▪ System ID problem for ARX model: 

Given data pairs 𝑢 𝑘 , 𝑦 𝑘
𝑘≤𝑁

, find the parameter vector 𝜃 that 

minimizes cost:

- 𝐽 መ𝜃 = σ𝑘=1
𝑁 || ො𝑦 𝑘 መ𝜃 − 𝑦(𝑘)||2
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▪ Formulate as least square problem: 

given data set, 𝑢1, 𝑦1 , 𝑢2, 𝑦2 , … , 𝑢𝑚, 𝑦𝑚

▪ Regressor: 
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▪ Derivation continued
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▪ System ID Example I: 

𝐺 𝑧 =
(𝑧2+𝑏)

𝑧3+𝑎𝑧
, find best estimate for 𝑎, 𝑏, 

given data set 𝑢1, 𝑦1 , 𝑢2, 𝑦2 , … , 𝑢20, 𝑦20
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▪ System ID Example 2: 

▪ 𝐺 𝑧 =
𝑧−1

𝑧−𝑎
, where 𝑎 is an unknown scalar

▪ Data: 𝑢 1 = 1, 𝑢 2 =
1

2
, 𝑢 3 = 1, 𝑦 1 = 2, 𝑦 2 = 1, 𝑦 3 = 2
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𝐺 𝑧

𝑒(𝑘)

𝑢(𝑘)
𝑦(𝑘)
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▪ Nonlinear Least Squares:

min
𝜃∈Θ

𝐽 𝜃 = 𝑦 − 𝑔 𝜃
2

▪ For general nonlinear function 𝑔(𝜃), analytical solution to the above 
optimization is not available

▪ Numerical optimization algorithms can be used to find the optimizer  
𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ 𝐽(𝜃)
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▪ Nonlinear Least Square Example: Navigation by range 
measurement:
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𝑏 1 = 𝑝1, 𝑞1

𝑏 2 = 𝑝2, 𝑞2

𝑏 3 = 𝑝3, 𝑞3

𝑏 4 = 𝑝4, 𝑞4

𝑦1
𝑦2

𝑦4

𝑦3

▪ : beacons with known positions 𝑏 𝑖 = 𝑝𝑖 , 𝑞𝑖

▪ : target with unknown position 𝜃 = 𝜃1, 𝜃2

▪ 𝑦𝑖 : known measured distance or range from beacon 𝑖:

typical assumption: 𝑦𝑖= | 𝑏 𝑖 − 𝜃 | + 𝑣𝑖
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▪ Given measurements 𝑦1, 𝑦2, … , 𝑦𝑚, find the best target location 𝜃

▪ We can choose cost function: 𝐽 𝜃 = σ𝑖=1
𝑚 𝑦𝑖 − 𝑏 𝑖 − 𝜃

2

▪ Coding Example
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