Fall 2021 ME424 Modern Control and Estimation

Lecture Note 4 Stability, Controllability, and Observability

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

So far, we have learned:

- What is a state space model
- How to derive state space model from physical systems, nonlinear model, continuous time model, and transfer function model
- How to identify state space model from input-out data pairs

• Question: how to use a state-space model?

- Predict system output: solution to a state space model
- Analysis of behavior: stability/controllability/observability
- Design controller

The goal of this lecture note: Given a state space model

- Derive its solution analytically
- Stability
- Controllability
- Observability

- State Space Solutions
- Internal Stability
- Controllability
- Observability
- Invariance under Similarity Transformation

General state space model:

$$x(k+1) = A(k)x(k) + B(k)u(k),$$

$$y(k) = C(k)x(k) + D(k)u(k)$$

- If system matrices (A(k), B(k), C(k), D(k)) change over time k, then system is called **Linear Time Varying (LTV)** system
- If system matrices are constant w.r.t. to time, then the system is called a **Linear Time Invariant (LTI)** System

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

Derivation of Solution to LTI state space system:

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

• given initial state $x(0) = \hat{x}$, and control sequence $u(0), ..., u(k), k \ge 0$, we have $x(k) = A^k \hat{x} + \sum_{j=0}^{k-1} A^{k-j-1} B u(j)$

- A large portion of control applications can be transformed into a regulation problem
 - Regulation problem: keep certain function of the state x(k) or output y(k) close to a known constant reference value under disturbances and model uncertainties

- Keep inverted pendulum at upright position ($\theta = 0$)
- Maintain a desired attitude of spacecraft or aircraft

For example:

- Air conditioner regulate temperate close to setpoint (e.g. 75F)
- Cruise control maintain a constant speed despite uncertain road conditions
- Converter maintains a desired voltage level for different loads
- If reference $y_{ref}(t)$ is changing, this is no longer a regulation problem (becomes a **tracking problem**, which will be discussed later in this class)

- State Space Solutions
- Internal Stability
- Controllability
- Observability
- Invariance under Similarity Transformation

■ **Internal Stability** (with $u(k) \equiv 0$, i.e. concerned with zero-input state response)

$$x(k+1) = Ax(k) + Bu(k),$$

$$y(k) = Cx(k) + Du(k)$$

- Asymptotic stable: $||x(k)|| \to 0$, as $k \to \infty$, for all initial state \hat{x}
- Marginal stable: $||x(k)|| \le M$, for all k = 1, 2, ...
- Recall state space solution for linear systems:

$$x(k) = A^{k}\widehat{x} + \sum_{j=0}^{k-1} A^{k-j-1}Bu(j)$$

■ Therefore, or linear system, the key for stability analysis is to understand how A^k behave as $k \to \infty$

• Case 1: diagonal matrix: e.g. $A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$

• Case 2: diagonalizable matrix, i.e. $\exists T \text{ such that } A = TDT^{-1}$

- Case 3: Unfortunately, not all square matrices are diagonalizable
 - e.g.: $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is **not diagonalizable**

■ Theorem (Internal stability): LTI (A, B) is asymptotically stable if all eigs of A satisfies $|\lambda_i| < 1$

- State Space Solutions
- Internal Stability
- Controllability
- Observability
- Invariance under Similarity Transformation

Nontrivial Fact (by Cayley Hamilton theorem): For a square matrix $A \in \mathbb{R}^{n \times n}$, A^k for arbitrary k can be written as a linear combination of $\{I, A, A^2, ..., A^{n-1}\}$

$$A^{k} = \alpha_{k}A^{n} + \alpha_{k-1}A^{n-1} + \dots + \alpha_{1}A + \alpha_{0}I$$

• E.g.:
$$A = \begin{bmatrix} 1 & -1 \\ -1 & -2 \end{bmatrix}$$
, $A^{10} = \begin{bmatrix} 365 & 1159 \\ 1159 & 3842 \end{bmatrix}$

We can write $A^{10} = \alpha_0 I + \alpha_1 A$

k-step reachability:

• Given a system (A, B), a final state x_f is called k-step reachable from an initial state x_0 if there exists an input sequence u(0), ..., u(k-1) such that $x(k) = x_f$

$$x(k) = A^k x_0 + \sum_{j=0}^{k-1} A^{k-j-1} Bu(j)$$

$$= A^k x_0 + Bu(k-1) + ABu(k-2) + \dots + A^{k-1} Bu(0)$$

• Matrix form:

• Reachability Lemma: a final state x_f is k-step reachable from x_0 if

$$x_f - A^k x_0 \in range\left([B, AB, \dots, A^{k-1}B]\right)$$

Reachability Examples:

•
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, with $x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Find out what state is reachable in 1 step, 2 steps, 10 steps?

• What if
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$?

Controllability

- A system matrix pair (A, B) is called **controllable** if any state $x_f \in R^n$ is reachable from any initial state $x_0 \in R^n$ in **finite** time steps
 - In other words, for any initial state $x_0 \in R^n$ and final sate $x_f \in R^n$, we can find a control input $u(\cdot)$ to steer the system from x_0 to x_f in finite time steps
- According to Reachability lemma, this requires: $x_f A^k x_0 \in range([B, AB, ..., A^{k-1}B]), \forall x_f, x_0$
- So system is controllable if and only if $rank([B, AB, ..., A^{k-1}B]) = n$ for some finite k
- One way to check controllability is to keep increasing k to see whether $[B, AB, ..., A^{k-1}B]$ is n or not
- Cayley Hamilton Theorem indicates that there is no need to check the case for k > n

- Controllability Test: (A, B) is controllable if and only if the controllability matrix $M_c \triangleq \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$, is full rank
 - Cayley-Hamilton theorem implies: $rank([B \ AB \ \cdots \ A^{k-1}B]) = rank([B \ AB \ \cdots \ A^{n-1}B])$, for all $k \ge n$

• Examples:

•
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\bullet A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

•
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- State Space Solutions
- Internal Stability
- Controllability
- Observability
- Invariance under Similarity Transformation

Observability:

■ A system (A, B, C) is called **observable** if any initial state $x_0 \in R^n$ can be uniquely determined given the system input trajectory u(0), u(1), ..., u(k-1) and output trajectory y(0), y(1), ..., y(k) for some finite k

- What is the relation between output and initial state?
 - Note $x(k) = A^k x_0 + \sum_{j=0}^{k-1} A^{k-j-1} Bu(j)$ = $A^k x_0 + Bu(k-1) + ABu(k-2) + \dots + A^{k-1} Bu(0)$

• Continue derivation for relation between $y(\cdot)$ and x_0

- In vector form, we have: $Y_k = O_k x_0 + T_k U_k \Rightarrow O_k x_0 = Y_k T_k U_k$
 - O_k maps initial state x_0 to outure over time [0, k-1]
 - T_k maps input to output over time [0, k-1]
- $Null(O_k)$ gives ambiguity in determining x_0
- x_0 can be uniquely determined if $Null(O_k) = \{0\}$, i.e. $rank(O_k) = n$, for some finite k

- Input u does not affect **ability** to determine x_0
 - its effect can be subtracted out
 - So we often say system (*A*, *C*) is observable or not (No need to mention *B*)

- Observability Test: (A,C) is observable if and only if observability matrix M_o is full rank, where $M_o = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$
 - Note: (A,C) observable \Leftrightarrow Any x_0 can be uniquely determined by u(0), ..., u(k-1), y(0), ..., y(k-1), for a finite k

Observability example:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, y(k) \equiv 2, u(k) \equiv 0, k = 0,1,2$$

- State Space Solutions
- Internal Stability
- Controllability
- Observability
- Invariance under Similarity Transformation

- Change of basis vectors for equivalent system representation
 - Canonical coordinate system:

New coordinate system: basis vectors

• Relation: x = Pz

- Dynamics in new coordinate systems:
 - $x(k) = Pz(k) \Rightarrow z(k) = P^{-1}x(k)$
 - Dynamics in original coordinate:

$$x(k+1) = Ax(k) + Bu(k), \quad y(k) = Cx(k) + Du(k),$$

Dynamics in the new coordinate

$$z(k+1) = \hat{A}z(k) + \hat{B}u(k), \ y(k) = \hat{C}z(k) + \hat{D}u(k)$$

• Derive $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$

• System $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ is called **equivalent** to original system (A, B, C, D)

- Similarity transformation does not change system stability, controllability and observability
 - A and PAP^{-1} have the same Jordan form, so similarity transformation does not change stability, i.e., A is (asymptotically) stable iff \widehat{A} is (asymptotically) stable

• $\widehat{M}_c = P^{-1} M_c$, with this it can be shown that M_c full rank iff \widehat{M}_c full rank

therefore, (A, B) controllable iff $(\widehat{A}, \widehat{B})$ controllable

 $\widehat{M}_o = M_o P$, similarly, this implies (A, C) observable iff $(\widehat{A}, \widehat{C})$ observable