Fall 2021 ME424 Modern Control and Estimation

Linear Algebra Review: Part III Geometry ~ linear algebra

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

- Inner product
- Projection
- Geometric sets
 - Lines
 - Convex set and cone
 - Hyperplanes
 - Polytopes
 - Ball, ellipsoid

Inner Product

• Inner product of vectors in R^n : $\langle v, w \rangle =$

• Norm of $v \in \mathbb{R}^n$

■ Angle between $v, w \in \mathbb{R}^n$

Orthogonality:

Inner Product

- General inner product $\langle \cdot, \cdot \rangle : V \times V \to R$
 - maps each pair in a vector space to a scaler
 - satisfies several key properties: linearity, conjugate, positive definiteness ...

• Inner product of matrices in $R^{m \times n}$: $\langle A, B \rangle =$

• Inner product of two functions f, g on interval [a, b]:

Projection

• Projection of $v \in \mathbb{R}^n$ along direction e

• $\{e_1, ..., e_k\}$ be orthonormal basis of vector space V, then any $v \in V$, $v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_k \rangle e_k$

Projection

• **Fourier series**: Consider a vector space of periodic functions: $V = \{\text{integrable functions over } [0,2\pi)\}$

- Inner product: $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$
- Basis: $B = \{1, \cos x, \sin(x), \cos(2x), \sin(2x), ...\}$

• $f \in V$, then

Representation of Geometric Objects / sets

• Implicit representation via (sub)-level sets:

$$\{x \in R^n : f(x) = 0\}$$
 or $\{x \in R^n : f(x) \le 0\}$

■ Explicit representation: $\{x(\alpha) \in \mathbb{R}^n : \alpha \text{ satisfies certain conditions}\}$

■ Line segment: Given $x_1 \neq x_2 \in \mathbb{R}^n$: $\{x_2 + \alpha (x_1 - x_2): \alpha \in [0,1]\}$

• Line (explicit): $\{x_2 + \alpha (x_1 - x_2) : \alpha \in R \}$

- Line: (implicit representation)
- e.g. in R^2 : $\{x \in R^2: a^T x = b\}$

• Hyperplanes (Implicit): $\{x \in R^n : a^T x = b\}$

• Hyperplanes (Explicit): $\{x \in R^n : a^T x = b\} \Rightarrow \{x_0 + \sum_i \alpha_i v_i : \alpha_i \in R, i = 1, ..., n-1\}$

• Halfspaces: $\{x \in R^n : a^T x \le b\}$

■ Convex set: A set *S* is called convex if $x_1, x_2 \in S \Rightarrow \alpha x_1 + (1 - \alpha)x_2 \in S$

■ Convex combination of
$$x_1, ..., x_k \in \mathbb{R}^n$$
 $\{\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k : \alpha_i \ge 0, \sum \alpha_i = 1\}$

• Convex hull $\overline{co}(S)$: set of all convex combinations of points in S

■ Cone: A set *S* is called a cone if $x \in S \Rightarrow \lambda x \in S$, $\forall \lambda \geq 0$

• Conic combination of $x_1, ..., x_k \in \mathbb{R}^n$ $cone(x_1, ..., x_k) = \{\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k : \alpha_i \ge 0\}$

• (Convex) Polyhedron: intersection of a finite number of half spaces $P = \{x : Ax \le b\}$

 Polyhedral cone: intersection of finitely many halfspaces that contain the origin:

$$P = \{x : Ax \le 0\}$$

• Polytope: bounded polyhedron

• Polyhedron (vertex representation):

$$P = \overline{co}(v_1, ..., v_m) \oplus cone(r_1, ..., r_q)$$

■ Euclidean balls: $B(x_c, r) = \{x \in R^n : ||x - x_c||_2 \le r\}$ or $B(x_c, r) = \{x_c + ru : u \in R^2, ||u||_2 \le 1\}$

■ Ellipsoids: $E = \{x \in R^n : (x - x_c)^T P^{-1} (x - x_c) \le 1\}$ or $E = \{x_c + Au : u \in R^2, ||u||_2 \le 1\}$