

MEE424 Fall 2021: Modern Control and Estimation Course Introduction

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

- Course Information:
 - Title: Modern Control and Estimation
 - Location: 2-201
 - Time: Monday 2pm 3:50pm

Wednesday (even weeks): 10:20am – 12:10pm

- Instructor: Wei Zhang, <u>zhangw3@sustc.edu.cn</u>
- TAs: Yinghan Sun, Daifeng Li, Bowen Shen
- Office Hours: TBD

Course website: <u>https://www.wzhanglab.site/teaching/ModernControlEstimation</u>

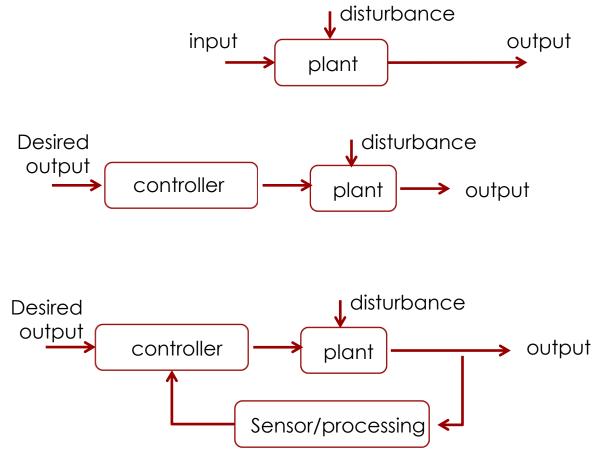
Course materials:

- Lecture notes
- Tutorials

Prerequisite:

- Linear algebra
- Probability
- Introductory control systems
- What to expect:
 - Math intensive course: advanced linear algebra and probability theory
 - Many homework and projects: good at coding (Python)
 - Good training with useful materials for
 - Motivated undergraduate students who plan to pursue graduate degree in control, robotics, or related areas.
- Outcome:
 - Solid understanding of modern control and estimation methods
 - Your own **Python toolbox** for modern control
 - Deep understanding on linear algebra and probability
 - Training on Python and robot simulation

Grading Policy:


 Homework 	20%
 Project 	20%
 Quiz 	10%
 Midterm 	20% (open book, lecture notes)
 Final Exam 	30% (open book, lecture notes)

• Notes:

- Discussion is allowed for homework, but all written work turned in must be your own.
- Projects need to be completed by small groups with 2 3 people.

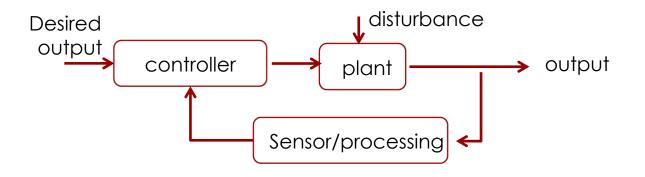
• What is Control?

Determine proper input of a system to achieve a desired output

Control applications

Robotics	Industrial robots, UAV control, humanoid robots, Autonomous vehicles, soft robots, underwater robots, multi-robot systems, AGVs, service robots
Medical	Medical instrumentation for monitoring and control; artificial limbs (prosthesis).
Home appliances	Home heating, refrigeration, and air conditioning via thermostatic control; humidity controllers; temperature control of ovens
Power/energy	Power system control (frequency and voltage); feedback instrumentation in oil recovery; optimal control of windmill blade and solar panel surfaces; optimal power distribution
Transportation	traffic flows control using sensors; automatic speed control devices on automobiles;
Manufacturing	Sensor-equipped robots for cutting, drilling die casting, forging, welding, packaging, and assembling; chemical process control; tension control windup processes in textile mills;
Aerospace and military	Missile guidance and control; automatic piloting; spacecraft control; tracking systems; nuclear submarine navigation and control; fire- control systems (artillery).

Control applications



Control design

- Modeling: from plant to mathematical model
- **Define control objectives:** small steady state errors, acceptable transient response, "Reject" disturbance, robust to parameter changes, small control efforts, ...
- State estimation/observer design: estimate system states from output measurements
- **Controller design**: come up with a control law that maps estimated state to the control input to achieve the control objectives

Tentative Outline:

- Review of Linear Algebra (1 week)
- State Space Models (1 week)
 - Digital control systems, transfer function model, state space model, realization theory
- Basics of System Identification (2 weeks)
 - Least squares, system identifications
- System properties (2.5 weeks)
 - State space model solutions, stability, controllability, observability
- Controller Design: Pole placement (1 week)
- Observer Design and Output Feedback (1 week)
- Review of Probability (1 week)
- Kalman Filtering (3 weeks)
 - Fundamentals of mean squared estimation, Kalman filter, applications
- Advanced Control (3 weeks)
 - Optimal control and Linear quadratic regulator
 - Model Predictive Control
- Selected Advanced Topics (if time permits)
 - Extended Kalman filter
 - Robot control applications

More Discussions