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Figure 8.1: Basic structure of a feedback control system. The compensator
measures the error between a reference and a measured output and pro-
duces signals to the plant that are designed to drive the error to zero despite
the presence of disturbances.

8.2 Actuator Dynamics

Robot manipulators are equipped with actuators to move the joints through
programmed motion trajectories in order to complete given tasks. These
actuators may be electric, hydraulic, or pneumatic. In this section we restrict
our attention to the dynamics of permanent magnet DC motors, as
these are the simplest actuators to analyze and are commonly used in robot
manipulators. Other types of electric motors, in particular AC motors and
so-called brushless DC motors, are also used as actuators for robots but
we will not discuss their dynamics here.

A DC motor works on the principle that a current-carrying conductor
in a magnetic field experiences a force F = i × φ, where φ is the magnetic
flux, i is the current in the conductor, and × is the vector cross product.
The motor itself consists of a fixed stator and a movable rotor that rotates
inside the stator as shown in Figure 8.2.

If the stator produces a radial magnetic flux φ and the current in the
rotor (also called the armature) is i, then there will be a torque on the
rotor causing it to rotate. The magnitude of this torque is

τm = K1φia (8.1)

where τm is the motor torque (Newton-meters), φ is the magnetic flux (we-
bers), ia is the armature current (amperes), and K1 is a physical constant.

In addition, whenever a conductor moves in a magnetic field, a voltage
Vb is generated across its terminals that is proportional to the velocity of
the conductor in the field. This voltage, called the back emf, will tend to
oppose the current flow in the conductor. Thus, in addition to the torque
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Figure 8.2: Principle of operation of a permanent magnet DC motor. The
magnitude of the force (or torque) on the armature is proportional to the
product of the current and magnetic flux. A commutator is required to
periodically switch the direction of the current through the armature to keep
it rotating in the same direction.

τm in Equation (8.1), we have the back emf relation

Vb = K2φωm (8.2)

where Vb denotes the back emf (volts), ωm is the angular velocity of the
rotor (radians per second), and K2 is a proportionality constant.

DC motors can be classified according to the way in which the magnetic
field is produced and the armature is designed. Here we discuss only the
so-called permanent magnet motors whose stator consists of a permanent
magnet. In this case we can take the flux φ to be a constant. The torque
on the rotor is then controlled by controlling the armature current ia.

Consider the schematic diagram of Figure 8.3, where

V = armature voltage

L = armature inductance

R = armature resistance

Vb = back emf

ia = armature current

θm = rotor position

τm = generated torque

τ` = load torque

φ = magnetic flux due to the stator
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Figure 8.3: Circuit diagram for an armature controlled DC motor. The
rotor windings have an effective inductance L and effective resistance R.
The applied voltage V is the control input.

The differential equation for the armature current is then

L
dia
dt

+Ria = V − Vb (8.3)

Since the flux φ is constant, the torque developed by the motor is

τm = K1φia = Kmia (8.4)

where Km is the torque constant in N -m/amp. Also, from Equation (8.2)
we have

Vb = K2φωm = Kbωm = Kb
dθm
dt

(8.5)

where Kb is the back emf constant. It can be shown that the numerical
values of Km and Kb are the same provided MKS units1 are used.

The torque constant can be determined from a set of torque-speed curves
as shown in Figure 8.4 for various values of the applied voltage V .

When the motor is stalled, the blocked-rotor torque at the rated voltage
Vr is denoted by τ0. Using Equations (8.3) and (8.4) with Vb = 0 and
dia/dt = 0 we have

Vr = Ria =
Rτ0

Km
(8.6)

Therefore the torque constant is

Km =
Rτ0

Vr
(8.7)

1MKS units are based on the meter, kilogram, and second.
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Figure 8.4: Typical torque-speed curves of a DC motor. Each line represents
the torque versus speed for a given value of the applied voltage.

Figure 8.5: Lumped model of a single link with actuator and gear train. Ja,
Jg, and J` are, respectively, the actuator, gear, and load inertias. Bm is the
coefficient of motor friction and includes friction in the brushes and gears.
The gear ratio is r : 1 with r � 1.

8.3 Load Dynamics

In this section we consider the dynamics of the DC motor in series with a
gear train and load as shown in Figure 8.5. The gear ratio is r : 1, where r
typically has values in the range 20 to 200 or more. The load is represented
by the rotational inertia J`. Referring to Figure 8.5, we set Jm = Ja + Jg,
the sum of the actuator and gear inertias.

In terms of the motor angle θm, the equation of motion of this system is
then

Jm
d2θm
dt2

+Bm
dθm
dt

= τm − τ`/r (8.8)

= Kmia − τ`/r
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Figure 8.6: Block diagram for a DC motor system. The block diagram
represents a third-order system from input voltage V (s) to output position
θm(s).

the latter equality coming from Equation (8.4). In the Laplace domain the
three Equations (8.3), (8.5), and (8.8) may be combined and written as

(Ls+R)Ia(s) = V (s)−KbsΘm(s) (8.9)

(Jms
2 +Bms)Θm(s) = KmIa(s)− τ`(s)/r (8.10)

The block diagram of the above system is shown in Figure 8.6.
The transfer function from V (s) to Θm(s) is given, with τ` = 0, by

(Problem 8–1)

Θm(s)

V (s)
=

Km

s [(Ls+R)(Jms+Bm) +KbKm]
(8.11)

The transfer function from the load torque τ`(s) to Θm(s) is given, with
V = 0, by (Problem 8–1)

Θm(s)

τ`(s)
=

−(Ls+R)/r

s [(Ls+R)(Jms+Bm) +KbKm]
(8.12)

Notice that the magnitude of this latter transfer function, and hence the
effect of the load torque on the motor angle, is reduced by the gear ratio r.

Frequently it is assumed that the “electrical time constant” L/R is much
smaller than the “mechanical time constant” Jm/Bm. This is a reasonable
assumption for many electromechanical systems and leads to a reduced order
model of the actuator dynamics. If we divide numerator and denominator
of Equations (8.11) and (8.12) by R and neglect the electrical time constant
by setting L/R equal to zero, the transfer functions in Equations (8.11) and
(8.12) become, respectively, (Problem 8–2)

Θm(s)

V (s)
=

Km/R

s(Jms+Bm +KbKm/R)
(8.13)
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Figure 8.7: Block diagram for the reduced-order system. The block diagram
now represents a second-order system.

and

Θm(s)

τ`(s)
=

−1/r

s(Jm(s) +Bm +KbKm/R)
(8.14)

In the time domain Equations (8.13) and (8.14) represent, by superposition,
the second-order differential equation

Jmθ̈m(t) + (Bm +KbKm/R)θ̇m(t) = (Km/R)V (t)− τ`(t)/r (8.15)

The block diagram corresponding to the reduced-order system (8.15) is
shown in Figure 8.7.

8.4 Independent Joint Model

In this section we refine the previous model by assuming that the load at-
tached to the DC motor is a link of a multi-link manipulator rather than
a simple rotational inertia in order to generate a more accurate description
of the manipulator load dynamics. This section assumes knowledge of the
Euler–Lagrange equations that we derived in Chapter 6 and may be skipped
if the reader has not studied that chapter.

In Chapter 6 we obtained the following set of differential equations
describing the motion of an n-degree-of-freedom manipulator (cf. Equa-
tion (6.66))

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (8.16)

We assume that the k-th component, τk, of the generalized force vector τ is
a torque about the axis zk−1 if joint k is revolute, and is a force along zk−1

if joint k is prismatic. If the output side of the gear train is directly coupled
to the joint axis, then the joint variables and motor variables are related by

qk = θmk/rk , k = 1, . . . , n (8.17)
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