Fall 2021 ME424 Modern Control and Estimation

Lecture Note 3 Least Squares and Basic System Identification

- control/robtics: system identification/ kalman filter E - signal processing: curve fitting/compressive sensing/face recognition/Fourier - Machine learning: linear regression Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

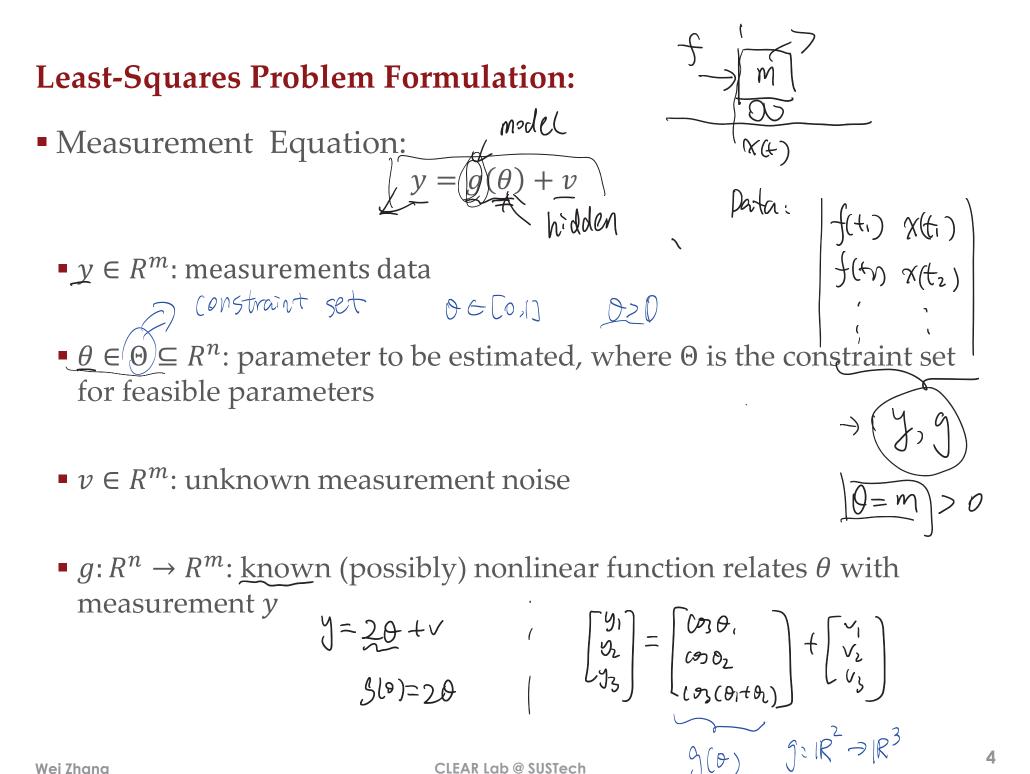
> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

• Last lecture: obtain discrete-time linear state space model from

- physical process
- given continuous time state space model
- given nonlinear state space model
- given discrete time transfer function
- The goal of this lecture note:
 - Iearn how to build model based on <u>observed input-output data pairs</u>
 - General case beyond the scope of this course
 - Focus on special case, where first obtain transfer function model from input-output data pairs, and then obtain the corresponding state space model
 - Main method: Least Squares



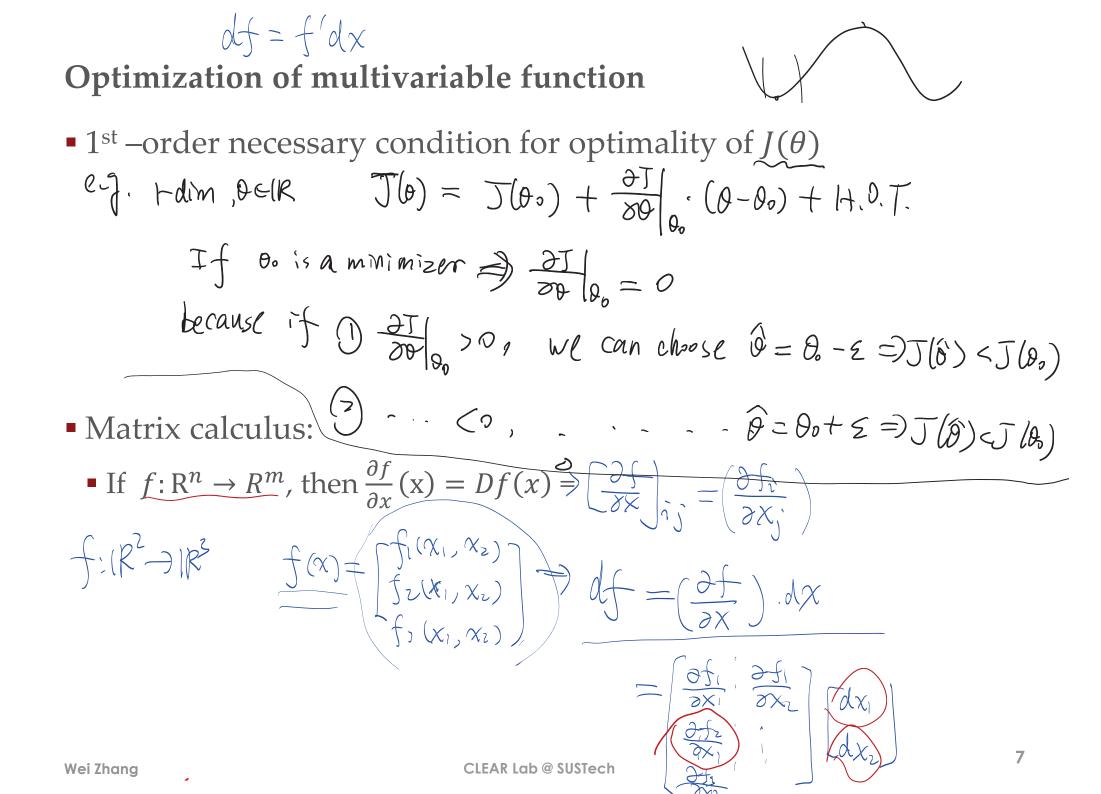
CLEAR Lab @ SUSTech

Least-Squares Problem Formulation:

- **Problem Statement**: Find the best parameter in the constraint set Θ that minimizes the difference between the model and the measurement measured data $\min_{\theta \in \Theta} J(\theta) = \min_{\theta \in \Theta} ||\underline{y} - g(\theta)||^2$ model subjut prediction $\theta = \begin{bmatrix} \theta_1 \\ \vdots \end{bmatrix}$ $\begin{array}{l} y = \begin{bmatrix} y_1 \\ y_2 \\ y_m \end{bmatrix}, \quad g(o) = \begin{bmatrix} g_1(o) \\ g_2(o) \\ \vdots \\ Sm(o) \end{bmatrix} \qquad = \min \left(\begin{array}{c} (y - g(o))^T (y - g(o)) \\ 0 \in \mathcal{A} \end{array} \right) \qquad = \min \left(\begin{array}{c} m \\ \sum (y_1 - g_1(o))^2 \\ 0 \in \mathcal{A} \end{array} \right) \end{array}$
- Linear Least Squares: $g(\theta) = H\theta$, where $H \in \mathbb{R}^{m \times n}$ is a given deterministic matrix $\begin{array}{c}
 0 & 9z^{(0_1)} \\
 1 & 9z^{(0_2)} \\
 0 & 9z^{(0$ 5 09,(Qr)

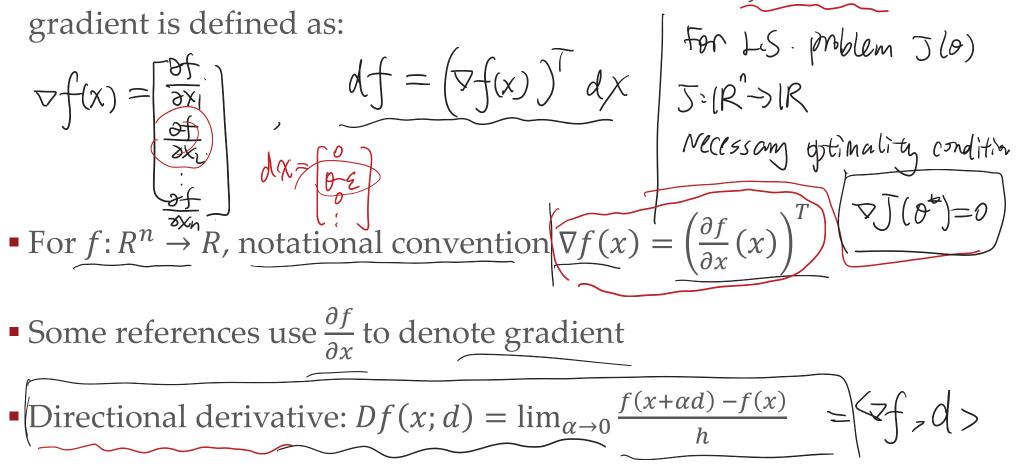
Outline

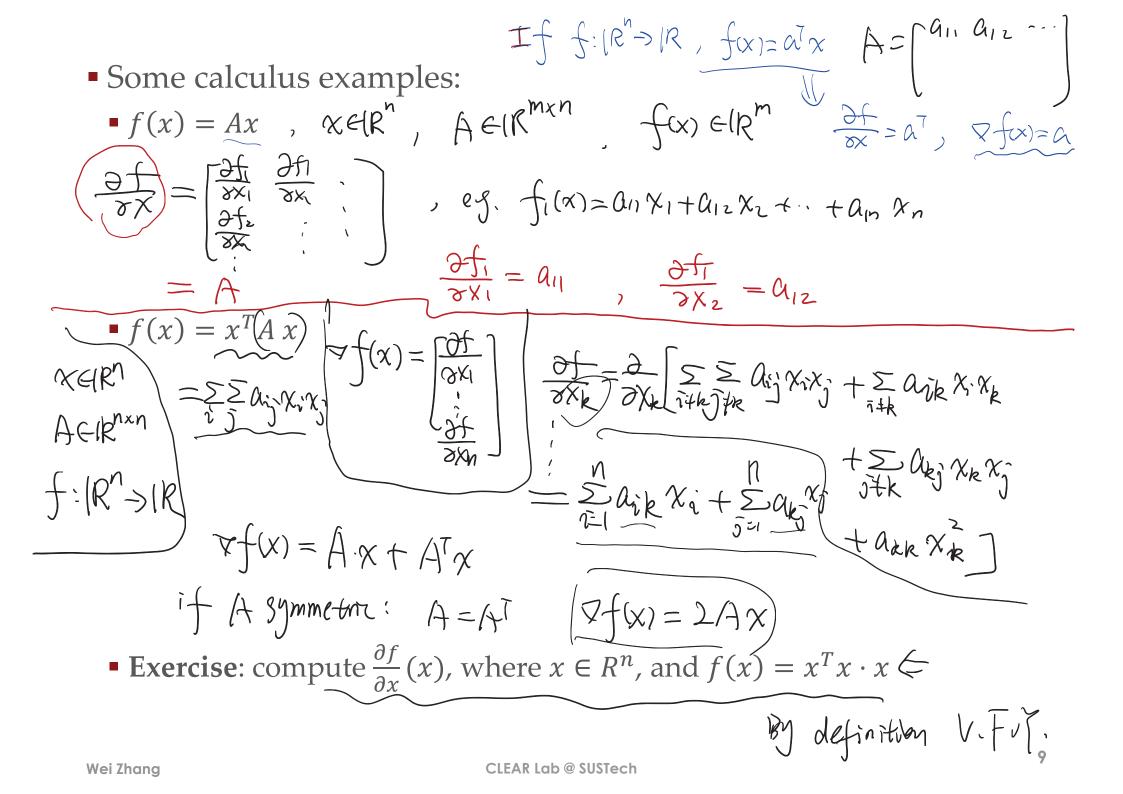
- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares



Optimization of multivariable function

• **Gradient**: For scaler valued multivariate function $f: \mathbb{R}^n \to \mathbb{R}$, its gradient is defined as:





• Derivation of linear least square solutions
• Normal equation: L.S.
$$\Rightarrow \min J(\theta) = \min ||y - H\theta||^2$$

 $J: [R^n > |R \qquad J(\theta) = \frac{||y - H\theta||^2}{2} = (y - H\theta)^T (y - H\theta) = y^T y - \theta^T H^T y - y^T H\theta + \theta^T H\theta + \theta^T H \theta + \theta^T H \theta - (M + e^{-2} \theta^T H^T y = y^T + \theta - \theta^T h^T y - y^T H\theta + \theta^T h \theta - (2 y^T H^T \theta + y^T y) = y^T (H^T \theta - \theta^T h^T y + y^T y)$
 $\Rightarrow = \theta^T H^T H \theta - 2 H^T y + 0 = 0 = \Rightarrow (H^T H^T) \theta = H^T y$
Normal equation
 $\theta_{LS} = (H^T H)^{-1} H^T y$
 $\theta_{LS} = (H^T H)^{-1} H^T y$

CLEAR Lab @ SUSTech

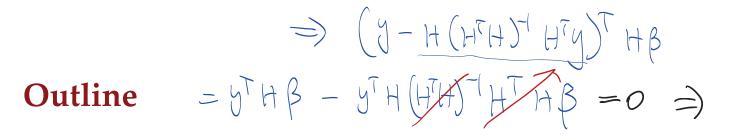
• Solution with full rank
$$H$$
: Recall : $H \in IR^{Mxn}$ assume $m > n$
Normal equation: $(H^TH)g = (H^Ty)$ V.F.Y
() $Tf H is full rank (rank(H) - n)$, \longrightarrow H^TH is nonsingular
 $\implies \partial_{US} = (H^TH)^{-1} H^Ty$
(2) $Tf H is not full rank $\implies H^TH$ singular
 $- e \cdot g \cdot H^TH = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $(H^Ty) = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$, $\implies \partial_{US} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + d \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
Null $((+)^TH) = span(\begin{bmatrix} 2 \\ -1 \end{bmatrix})$
 $e \cdot S = (H^TH) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $H^Ty = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ No solution.
 $c \cdot l(H^TH) = span(\begin{bmatrix} 2 \\ 1 \end{bmatrix})$$

 $J(0 \ge 11y - H0,11^2$

Geometric interpretation of linear least squares

① For any
$$\theta \in \mathbb{R}^n$$
, $H\theta$ is a linear combination of columns of H
② If $y \in col(H)$, we can find θ such that $y = H\theta \Rightarrow J(\theta) = 0$
 $V.F.T.$: If $y \in col(H)$, then $J(\theta_{LS}) = 0$
 $i \cdot \ell \cdot \|y - H \cdot (H^TH)^T H^T y\|_{=0}^2 = 0$
 $(H^TH)^T H^T y$

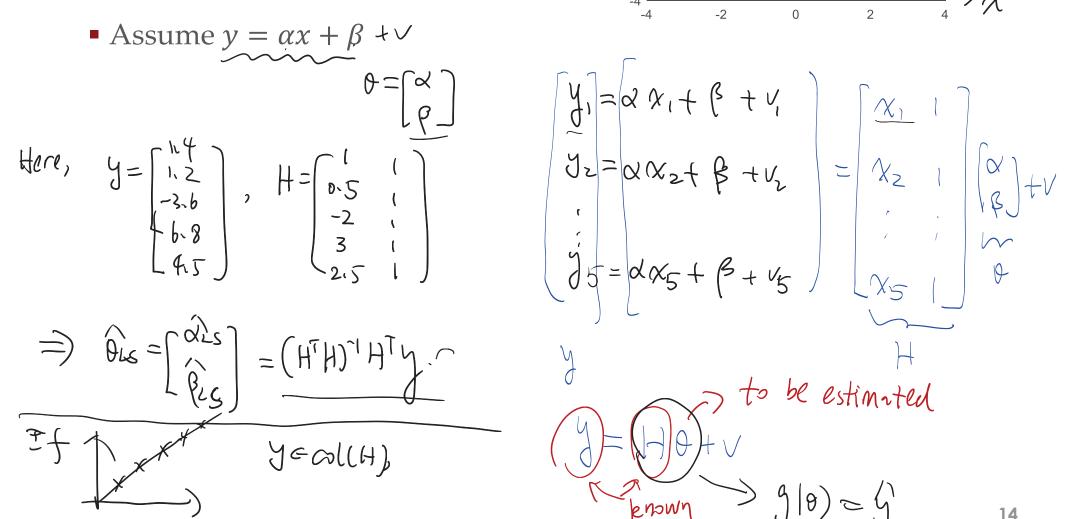
3 If yt col(H), no exact solution, we have to find the minimum distance solution Geometrically, e.g. H=[h, hz]. L.S. tries to find the ôls to min 11y-H011² Intuitively, 1+ôls should be the proj of y onto col(H).
10 UH2 Let's verify our intuition with ôls : error vector (y-Hôls) should be orthogonal to col(H), n.e. (y-Hôls)^T (HB) = 0.0 β

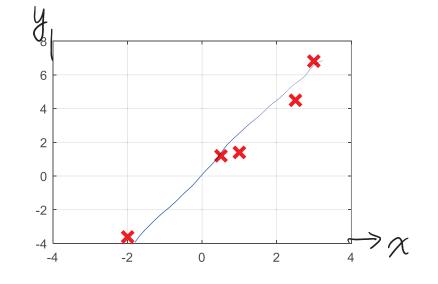


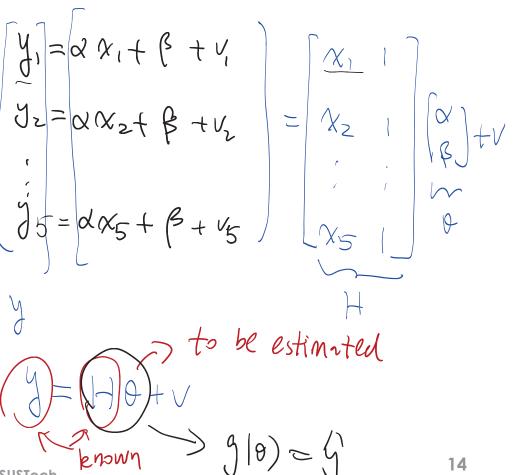
- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

Linear Least Squares Example:

i	1	2	3	4	5
x	1	0.5	-2	3	2.5
у	1.4	1.2	-3.6	6.8	4.5







Wei Zhana

CLEAR Lab @ SUSTech

14

• Change hypothesis, assume
$$y \approx be^{ax}$$

use the same data, find the J.S. estimate
for (a,b)
 $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$, $y \approx be^{ax}$, take log.
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \Rightarrow$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log y \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b + a \propto \oplus$
 $\log b \approx \log b = \log b + \log \otimes \otimes$

Wei Zhang

CLEAR Lab @ SUSTech

15

4

• Change hypothesis, assume that
$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

same data, find L.S. estimate for $\alpha_0, \alpha_1, \alpha_2$
 $\theta = \begin{bmatrix} \alpha' 0 \\ \alpha_1 \\ \alpha_1 \end{bmatrix}$, $y_1 = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_1^2 + v_1$
 $y_2 = \alpha_0 + \alpha_1 \alpha_2 + \alpha_2 x_1^2 + v_2$
 $y_5 = \alpha_0 + \alpha_1 \alpha_2 + \alpha_2 x_2^2 + v_5$
 $\Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 \\ 1 & \alpha_2 & \alpha_2^2 \\ \vdots \\ 1 & \alpha_5 & \alpha_5^2 \end{bmatrix} \begin{bmatrix} \alpha' 0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} + v$
 $y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_1^2 + v_1$

Outline

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

Application to System Identification for Linear Systems

• ARX(
$$p, q$$
) model :(Autoregressive with exogenous input)

$$\underbrace{y(k) + \alpha_1 y(k-1) + \dots + \alpha_p y(k-p) \leq \text{ Auto YegYessive}}_{= \beta_0 u(k) + \beta_1 u(k-1) + \dots + \beta_q u(k-q) + v(k)}$$
• $v(k)$: noise signal
If $y(k) + y(k-1) = 2u(k) + \beta_1 u(k-1) + \beta_2 u(k-2)$. $\Theta = \begin{bmatrix} 1 \\ 2 \\ \beta_1 \\ \beta_2 \end{bmatrix}, \Theta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_1 \\ \beta_2 \end{bmatrix}$
• Model parameter: $\Theta = \begin{bmatrix} \alpha_1, \dots, \alpha_p, \beta_0, \beta_1, \dots, \beta_q \end{bmatrix}^T$

• One-step predictor:

$$\underbrace{\hat{y}(k|\theta) = -\alpha_1 y(k-1) - \dots - \alpha_p y(k-p)}_{+\beta_0 u(k) + \beta_1 u(k-1) + \dots + \beta_q u(k-q)}$$
given parameter θ , use expect to see an output Measurement $\hat{j}(k|\theta)$

• System ID problem for ARX model:

Given data pairs $\{(u(k), y(k))\}_{k \le N}$, find the parameter vector θ that minimizes cost:

-
$$J(\mathbf{0}) = \sum_{k=1}^{N} ||\hat{y}(k|\mathbf{0}) - y(k)||^2$$

$$J(p) = \sum_{k=1}^{N} || \hat{y}(k|0) - y(k) ||^{2}$$

• Formulate as least square problem:

given data set,
$$(u_1, y_1), (u_2, y_2), \dots, (u_m, y_m)$$

 $\swarrow m = \# of data pairs$

Regressor: at time k

$$\begin{split} \dot{y}(k;\theta) &= -d, y(k+1) - d_{2}y(k-2) - d_{p}y(k-p) + \beta_{0} u(k) + \beta_{1}u(k+1) + + \beta_{1}u(k-q) \\ &= \left[-y(k+1) - y(k+2) - -y(k-p) - u(k) - u(k-q) \right] \begin{bmatrix} d_{1} \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ p \\ \beta_{0} \\ \vdots \\ \beta_{1} \end{bmatrix} \\ &\stackrel{(k)}{=} \frac{d_{1}(k)}{d_{1}} \frac{d_{1}}{d_{2}} \\ &\stackrel{(k)}{=} \frac{d_{1}(k)}{d_{2}} \frac{d_{1}(k)}{d_{2}} \\ &\stackrel{(k)}{=}$$

Derivation continued

$$l(t's donote k_{0} = max \{ p, q \} +]$$

$$J(k_{0}) = \phi^{T}(k_{0}) 0 + v(k_{0})$$

$$J(k_{0}+1) = \phi^{T}(k_{0}+1) 0 + v(k_{0}+1)$$

$$\vdots$$

$$J(k_{0})$$

$$J(k_{0})$$

$$= \begin{pmatrix} \phi^{T}(k_{0}) \\ \phi^{T}(k_{0}+1) \\ \vdots \\ \phi^{T}(m) \end{pmatrix} 0 + v = 0$$

$$\Rightarrow \hat{\Theta}_{s} = (H^{T}H)^{T}H^{T}y$$

• System ID Example I:

22

System ID Example 2:

$$u(k) \longrightarrow G(z) \xrightarrow{e(k)} y(k)$$

• $G(z) = \frac{z-1}{z-a}$, where *a* is an unknown scalar

• Data: $u(1) = 1, u(2) = \frac{1}{2}, u(3) = 1, y(1) = 2, y(2) = 1, y(3) = 2$

Outline

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

- Nonlinear Least Squares: $\min_{\theta \in \Theta} J(\theta) = ||y g(\theta)||^2$ $\lim_{\theta \in \Theta} J(\theta) = ||y - g(\theta)||^2$ is nonlinear otherwise
 - For general nonlinear function $g(\theta)$, analytical solution to the above optimization is not available
 - Numerical optimization algorithms can be used to find the optimizer $\theta^* = argmin_{\theta \in \Theta} J(\theta)$

Nonlinear Least Square Example: Navigation by range measurement:

$$b^{(2)} = (\underline{p}_2, \underline{q}_2)$$

$$b^{(1)} = (p_1, q_1)$$

$$y_1$$

$$y_2$$

$$y_3$$

$$b^{(3)} = (\underline{p}_3, \underline{q}_3)$$

$$b^{(4)} = (p_4, q_4)$$

$$(0, 0, 1)$$

- : beacons with known positions $b^{(i)} = (p_i, q_i)$
- ***** : target with unknown position $\theta = (\theta_1, \theta_2)$
- y_i : known measured distance or range from beacon *i*: typical assumption: $y_i = ||\underline{b}^{(i)} - \theta|| + \underline{v}_i$

$$= \sqrt{(p_{i} - \theta_{i})^{2} + (q_{i} - \theta_{2})^{2}} + v_{i}$$

CLEAR Lab @ SUSTech

• Given measurements $y_1, y_2, ..., y_m$, find the best target location θ

• We can choose cost function:
$$J(\theta) = \sum_{i=1}^{m} \left(y_i - \left(|b^{(i)} - \theta| \right) \right)^2$$

 $\widehat{\theta}_{MS} = \operatorname{argmin} J(\theta)$

Coding Example