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Full State-feedback: Eigenvalue Assignment

= Luenberger Observer Design

Output-feedback Control and Separation Principle
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= State space solution (with zero control u(k) = 0)
= x(k) = A*x(0)
= Simple Case (Diagonalizable):
, _

A2

= A=TDT™1=T T-1

= Transient response depends on the terms of the form A¥
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= General case: Jordan form

1
= A=TJT1=T )2 T-1 = Ak =
Jq|
2, 1 0] 'Ai_c k/li-‘_l k(k- 1)/11( 2]
= Fact: if J; = 8 )(L)l- ; == pL. k/ﬁ-‘ 1
- 2 0 0 Al

= Transient response depends on the terms of the form
ke = 1) (k= J) s
J! i
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= The shape of transient response is determined by the locations
of the eigenvalues

0 =

| cos(8) sin(6)

- P —sin(@) cos(H)
e.g: x(k) = A*x(0), with x(0) = [1 1]
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= Large |A| produces slow convergence, while a small |4| produces fast
convergence

= Areal A produces a monotonic response, while a complex A produces
an oscillatory response

= For a complex 4, the response becomes more oscillatory as the ratio
Im(A)

Increases
Re(A)

= Control design goal (for linear system): to modify the eigs of original
system to achieve desired response.

= Feedback control fall into two categories

= State Feedback: all state variables are measured and can be used in feedback
u(t) = g(x(@®)
= Output Feedback: Only output y = Cx + Du (typically dim(y)<dim(x)) are
measured and can be used in feedback

u(t) = gy(@®))
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» State feedback: full state information available to make control
decision:

= We focus on linear case: Let u = —Kx

= we just need to design the feedback gain matrix K

= Plug in to obtain closed-loop system:
» x(k+ 1) = Ax(k) + Bu(k) =

* Closed-loop system matrix: (A-BK)

= Pole placement (eigenvalue assignment) problem: find K so that the
closed-loop system A — BK has the desired set of eigenvalues
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= Single Input case:

» Consider controllable canonical form

0 1 0 0
A= 0 1 ,B = ol’ C and D arbitrary
—Qp —ap . —Qpg 1

= If a system (4, B) is in controllable canonical form, then it is always
controllable (verify this by checking the controllability matrix of
(4, B)
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= Characteristic polynomial for A

0 1 - 0
A= 0 1
—Q T . TAp—g

u AA(/l) — ATL + an_lﬂ.n_l + .-+ a1/1 + ao
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= Characteristic polynomial for closed-loop Ay = A — BK
= Assume: K = [kq,ky, ..., k]

" A, (D) = 2"+ (@ + kDA + (app + ko ))A 2 4 +
(al + kz)ﬂ. + (C(O + kl)
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= Eigenvalue assignment: given desired 44, ..., 4,, how to choose K?

= Step 1: Find desired closed-loop characteristic polynomial:
. Adesired()l) = (- /11)(/‘l _ /12) (A — )ln) ="+ a;_lﬂn_l + -+ aI/l + CZE;

u Step 2: We know: AACl (A) = A" + (an_l + kn)).n_l + (An_z +
kn_l)).n_z + -4 (“1 + kz)A + (ao + kl)

choose ky, ..., k,,to match coefficients
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= Eigenvalue assignment example:

A= [_01 _12] , B = [(1)] , desired eig: 1} = 0.5, 13 = —0.5
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= What about general single input system (4, B), with B € R™*?
= Recall: If original system: x(k + 1) = Ax(k) + Bu(k).
Controllability matrix: M, = [B AB --- A" 1B]
= Under similarity transformation: x(k) = Px(k), we have:
x(k+1) = Ax(k) + Bu(k), with A = P~'AP,B =P~ 1B
M.=|BAB -- A" B| = P1M,

= FACT: eig(A) = eig(/T), hence = A,(1) = A;(1)

= Main idea:
= transform the system into a controllable canonical form (4, B)

* Design gain K to assign eig(A4 — BK) to desired ones
= Transform back to the original coordinate to get K so that eig(A-BK) =

eig(A — BK)
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= Figenvalue assignment procedure for general single input
system (4, B)
= Step 1: Similarity transform: find P, such that x(k) = Px(k), and
X (k) dynamic is in controllable canonical form
(1) Given A, compute: A4(A) = A"+ ap_ A" 1+ -+ A+ ay

(2) We know: Az(1) = A4(1), by controllable canonical form structure, we

have
0 1 0 0]
A= 0 1 B = ol’
_ao _al _an_l _1_

(3) Compute controllability matrix: M, using (4, B) and M, using (4, B)

) P =M,;!
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= Step 2: find K to assign desired eigs for (4, B)

= Step 3: compute K = KP™1

= Note that A — BK and A — BK have the same set of eigs

* Coding Example: A=[2 0 -2; 4 -2 2,0 2
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= What about multiple inputs: (B € R"™™,m > 2)

= Sometimes has redundancy, we can just use one column of B
to assign eigs

= General case is quite involved, use numerical tools to assign
eigs or use LQR controller which will be covered later
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= Remarks on choosing desired poles (eigenvalues)

= Continuous time case:

wp

H(s) =
() s2 + 2{w,s + w?

" w, :natural frequency

= {: damping ratio ({ > 1 overly-damped, { = 1 critically damped, { <
1 under-damped)

= Under damped system (¢ < 1): two complex poles:
P12 = —(wp t jwy/1— 7%, define: 6 = cos™ ¢

Im4
pl Ix-\: ________ wn V 1 - (2
N -
_Cwni €
P2 %
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= Tradeoffs:

1. Poles moves to the left, i.e. larger {w,

3. Smaller 6

2. Poles moves up, i.e., larger w,/1 — {?
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= Discrete time case:

= Relations:

" P12 = —Cwy * jwnp/1 — CZ

= T:sampling time

= z=¢5T

= Pole selection example:

= Suppose we want settling time Tg < 5 sec and PO < 35%
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= Observer Design:

state vector is not available; u can only depend on output y

Observer: estimate system state vector X(k) = x(k) given y(k), u(k)
and (4,B,C,D)

Key: generate estimate iteratively according to known system
dynamics:
X(k+1) = AX(k) + Bu(k) + L [y(k) — Cx(k) — Du(k)]

Iteratively update state estimate using previous estimate X¥(k) and
new data available at time k: u(k), y(k),

This way of estimating state is called Luenberger observer

22
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= State estimation error vector: e(k) = x(k) — X (k)
= Error dynamics: e(k + 1) = (A — LC)e(k)

= Goal: design L matrix such that eigs(4 — LC) are at desired locations
to ensure estimation error converge to zero with a desired transient
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= Observer design: Find observer gain matrix L such that error
dynamics have desired eigenvalues

Duality Theorem: (4, C) observable < (AT, C T) controllable

(remark: We say a pair (F, H) is controllable if a system with “A” matrix equal to F
and “B” matrix equal to H is controllable. This also means M, =
[H FH F?H --- F" 1H]is full rank)
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= Consequence of the duality theorem: If system (A,C) is
observable, we can use feedback gain design method to find
observer gain L such that eig(4 — LC) has desired eigs
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= Output feedback control procedure:
= System: x(k +1) = A x(k) + Bu(k),y(k) = Cx(k) + Du(k)
= Find K, L such that A — BK and A — LC have desired eigs
= At time k = 0, pick arbitrary X(0)
= For k =0, given X(k), u(k), y(k), compute:
« 2(k+1) = A%(k) + Bu(k) + L [y(k) — C2(k) — Du(k)]
s u(k+1) = —K&(k+1)

= General guideline:

eigenvalues of (A - BK) are chosen to meet the design specifications
on the transient response. The eigenvalues of (A-LC) are chosen
much faster than those of (A - BK)
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= Separation principle: Observer eigs and controller eigs can be
assigned separately

x(k)

ol | With 1) = =K2(K)

* Closed-loop dynamics: joint state vector: [
= Dynamics for joint state vector:
x(k+ D] | Ax(k) + Bu(k)
e(k+1)| |Ax(k) + Bu(k) — (A%(k) + Bu(k) + L [y(k) — Cx(k) — Du(k)])

(Ax(k) + B(—K)x(k)| [Ax(k) — BKx(k) + BKe(k)

(A —LC)e(k) (A — LC)e(k)

_[A-BK BK]x(k)
B 0 A—LC]|e(k)

= The design of K and L can be done separately to meet specified
controller and observer performance (characterized by eigs(A-BK)
and eigs(A-LC))
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= Summary
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