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▪ Eigenvalues ↔ System Response

▪ Full State-feedback: Eigenvalue Assignment

▪ Luenberger Observer Design

▪ Output-feedback Control and Separation Principle
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▪ State space solution (with zero control 𝑢 𝑘 = 0)

▪ 𝑥 𝑘 = 𝐴𝑘𝑥 0

▪ Simple Case (Diagonalizable): 

▪ 𝐴 = 𝑇𝐷𝑇−1 =𝑇

𝜆1
𝜆2

⋱
𝜆𝑞

𝑇−1

▪ 𝐷𝑘 =

𝜆1
𝑘

𝜆2
𝑘

⋱
𝜆𝑞
𝑘

▪ Transient response depends on the terms of the form 𝜆𝑖
𝑘
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▪ General case: Jordan form 

▪ 𝐴 = 𝑇𝐽𝑇−1 =𝑇

𝐽1
𝐽2

⋱
𝐽𝑞

𝑇−1 ⇒ 𝐴𝑘 =

▪ Fact: if 𝐽𝑖 =
𝜆𝑖 1 0
0 𝜆𝑖 1
0 0 𝜆𝑖

⇒ 𝐽𝑖
𝑘 =

𝜆𝑖
𝑘 𝑘𝜆𝑖

𝑘−1 𝑘 𝑘−1

2
𝜆𝑖
𝑘−2

0 𝜆𝑖
𝑘 𝑘𝜆𝑖

𝑘−1

0 0 𝜆𝑖
𝑘

▪ Transient response depends on the terms of the form 
𝑘 𝑘 − 1 ⋯ 𝑘 − 𝑗

𝑗!
𝜆𝑖
𝑘−𝑗
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▪ The shape of transient response is determined by the locations 
of the eigenvalues 
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𝐴 = 𝜌
cos(𝜃) sin(𝜃)
−sin(𝜃) cos(𝜃)

⇒ 𝜆1,2 = 𝜌 cos 𝜃 ± 𝑗 sin 𝜃

e.g: 𝑥 𝑘 = 𝐴𝑘𝑥 0 , with 𝑥 0 = 1 1 𝑇
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▪ Large |𝜆| produces slow convergence, while a small |𝜆| produces fast 
convergence

▪ A real  𝜆 produces a monotonic response, while a complex 𝜆 produces 
an oscillatory response

▪ For a complex 𝜆, the response becomes more oscillatory as the ratio 
𝐼𝑚 𝜆

𝑅𝑒 𝜆
increases

▪ Control design goal (for linear system): to modify the eigs of original 
system to achieve desired response. 

▪ Feedback control fall into two categories

▪ State Feedback: all state variables are measured and can be used in feedback
𝑢 𝑡 = 𝑔 𝑥 𝑡

▪ Output Feedback: Only output 𝑦 = 𝐶𝑥 + 𝐷𝑢 (typically dim(y)<dim(x)) are 
measured and can be used in feedback

𝑢(𝑡) = 𝑔(𝑦(𝑡))
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▪ State feedback: full state information available to make control 
decision:

▪ We focus on linear case: Let 𝑢 = −𝐾𝑥

▪ we just need to design the feedback gain matrix 𝐾

▪ Plug in to obtain closed-loop system:

▪ 𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘 =

▪ Closed-loop system matrix: (A-BK)

▪ Pole placement (eigenvalue assignment) problem: find 𝐾 so that the 
closed-loop system 𝐴 − 𝐵𝐾 has the desired set of eigenvalues

8



CLEAR Lab @ SUSTechWei Zhang

▪ Single Input case: 

▪ Consider controllable canonical form

ҧ𝐴 =

0 1 ⋯ 0
⋮ ⋮ ⋱
0 ⋯ ⋯ 1
−𝛼0 −𝛼1 ⋯ −𝛼𝑛−1

, ത𝐵 =

0
⋮
0
1

, ҧ𝐶 𝑎𝑛𝑑 ഥ𝐷 arbitrary

▪ If a system ( ҧ𝐴, ത𝐵) is in controllable canonical form, then it is always 
controllable (verify this by checking the controllability matrix of 
𝐴, 𝐵
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▪ Characteristic polynomial for ҧ𝐴

ҧ𝐴 =

0 1 ⋯ 0
⋮ ⋮ ⋱
0 ⋯ ⋯ 1
−𝛼0 −𝛼1 ⋯ −𝛼𝑛−1

▪ 𝛥 ҧ𝐴 𝜆 = 𝜆𝑛 + 𝛼𝑛−1𝜆
𝑛−1 +⋯+ 𝛼1𝜆 + 𝛼0
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▪ Characteristic polynomial for closed-loop Acl = ҧ𝐴 − ത𝐵ഥ𝐾

▪ Assume: ഥ𝐾 = 𝑘1, 𝑘2, … , 𝑘𝑛

▪ Δ𝐴𝑐𝑙 𝜆 = 𝜆𝑛 + 𝛼𝑛−1 + 𝑘𝑛 𝜆𝑛−1 + 𝛼𝑛−2 + 𝑘𝑛−1 𝜆𝑛−2 +⋯+

𝛼1 + 𝑘2 𝜆 + 𝛼0 + 𝑘1

11



CLEAR Lab @ SUSTechWei Zhang

▪ Eigenvalue assignment: given desired 𝜆1, … , 𝜆𝑛, how to choose ഥ𝐾?

▪ Step 1: Find desired closed-loop characteristic polynomial:

▪ Δ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝜆 = 𝜆 − 𝜆1 𝜆 − 𝜆2 ⋯ 𝜆 − 𝜆𝑛 = 𝜆𝑛 + 𝛼𝑛−1
∗ 𝜆𝑛−1 +⋯+ 𝛼1

∗𝜆 + 𝛼0
∗

▪ Step 2: We know: Δ𝐴𝑐𝑙 𝜆 = 𝜆𝑛 + 𝛼𝑛−1 + 𝑘𝑛 𝜆𝑛−1 + (

)

𝜆𝑛−2 +

𝑘𝑛−1 𝜆𝑛−2 +⋯+ 𝛼1 + 𝑘2 𝜆 + 𝛼0 + 𝑘1

choose 𝑘1, … , 𝑘𝑛to match coefficients 
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▪ Eigenvalue assignment example: 

ҧ𝐴 =
0 1
−1 −2

,  ത𝐵 =
0
1
, desired eig:  𝜆1

∗ = 0.5, 𝜆2
∗ = −0.5
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▪ What about general single input system (𝐴, 𝐵), with 𝐵 ∈ 𝑅𝑛×1

▪ Recall: If original system: 𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘 .  
Controllability matrix: 𝑀𝑐 = [𝐵 𝐴𝐵⋯ 𝐴𝑛−1𝐵]

▪ Under similarity transformation: 𝑥 𝑘 = 𝑃 ҧ𝑥 𝑘 ,  we have: 
ҧ𝑥 𝑘 + 1 = ҧ𝐴 ҧ𝑥 𝑘 + ത𝐵𝑢 𝑘 , with ҧ𝐴 = 𝑃−1𝐴𝑃, ത𝐵 = 𝑃−1𝐵
ഥ𝑀𝑐 = ത𝐵 ҧ𝐴 ത𝐵 ⋯ ҧ𝐴𝑛−1 ത𝐵 = 𝑃−1𝑀𝑐

▪ FACT: 𝑒𝑖𝑔 𝐴 = 𝑒𝑖𝑔 ҧ𝐴 , ℎ𝑒𝑛𝑐𝑒 ⇒ Δ𝐴 𝜆 = Δ ҧ𝐴 𝜆

▪ Main idea: 

▪ transform the system into a controllable canonical form ҧ𝐴, ത𝐵

▪ Design gain ഥ𝐾 to assign 𝑒𝑖𝑔 ҧ𝐴 − ത𝐵ഥ𝐾 to desired ones

▪ Transform back to the original coordinate to get 𝐾 so that  eig(A-BK) = 
eig( ҧ𝐴 − ത𝐵ഥ𝐾)
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▪ Eigenvalue assignment procedure for general single input 
system 𝐴, 𝐵

▪ Step 1: Similarity transform:  find 𝑃, such that 𝑥 𝑘 = 𝑃 ҧ𝑥 𝑘 , and 
ҧ𝑥 𝑘 dynamic is in controllable canonical form

(1) Given A , compute:  Δ𝐴 𝜆 = 𝜆𝑛 + 𝛼𝑛−1𝜆
𝑛−1 +⋯+ 𝛼1𝜆 + 𝛼0

(2) We know: Δ ҧ𝐴 𝜆 = Δ𝐴 𝜆 , by controllable canonical form structure, we 
have

ҧ𝐴 =

0 1 ⋯ 0
⋮ ⋮ ⋱
0 ⋯ ⋯ 1
−𝛼0 −𝛼1 ⋯ −𝛼𝑛−1

, ത𝐵 =

0
⋮
0
1

,

(3) Compute  controllability matrix: ഥ𝑀𝑐 using ҧ𝐴, ത𝐵 and 𝑀𝑐 using (𝐴, 𝐵)

𝑃 = 𝑀𝑐
ഥ𝑀𝑐
−1
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▪ Step 2: find ഥ𝐾 to assign desired eigs for ( ҧ𝐴, ത𝐵)

▪ Step 3:  compute 𝐾 = ഥ𝐾𝑃−1

▪ Note that 𝐴 − 𝐵𝐾 and ҧ𝐴 − ത𝐵ഥ𝐾 have the same set of eigs

▪ Coding Example: A =[ 2   0  -2;  4  -2   2;  0     2    -2], B = [1 0 1]’;
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▪ What about multiple inputs: (𝐵 ∈ R𝑛×𝑚, 𝑚 ≥ 2)

▪ Sometimes  has redundancy, we can just use one column of 𝐵
to assign eigs

▪ General case is quite involved, use numerical tools to assign 
eigs or use LQR controller which will be covered later
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▪ Remarks on choosing desired poles (eigenvalues)

▪ Continuous time case: 

▪ 𝜔𝑛 : natural frequency

▪ 𝜁: damping ratio (𝜁 > 1 overly-damped, 𝜁 = 1 critically damped, 𝜁 <
1 under-damped)

▪ Under damped system (𝜁 < 1): two complex poles:

𝑝1,2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2,    define: 𝜃 = cos−1 𝜁

18

𝐻 𝑠 =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝑝1

𝑝2

𝜃
−𝜁𝜔𝑛

𝜔𝑛 1 − 𝜁2

Re

Im
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𝑻𝒔 =
𝟒

𝜻𝝎𝒏
,   settling time 

𝑻𝒑 =
𝝅

𝝎𝒏 𝟏−𝜻𝟐
, peak time

PO= 𝟏𝟎𝟎𝒆

−
𝜻𝝅

𝟏−𝜻𝟐
percent overshoot

𝑝1

𝑝2

𝜃
−𝜁𝜔𝑛

𝜔𝑛 1 − 𝜁2

Re

Im

▪ Tradeoffs:

1. Poles moves to the left, i.e. larger 𝜁𝜔𝑛

2. Poles moves up, i.e., larger 𝜔𝑛 1 − 𝜁2

3. Smaller 𝜃
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▪ Discrete time case:  

▪ Relations:

▪ 𝑝1,2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

▪ 𝑇: sampling time

▪ 𝑧 = 𝑒𝑠𝑇

▪ Pole selection example:  

▪ Suppose we want settling time 𝑇𝑠 ≤ 5 sec and 𝑃𝑂 ≤ 35%
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▪ Observer Design: 

▪ state vector is not available; 𝑢 can only depend on output 𝑦

▪ Observer: estimate system state vector ො𝑥 𝑘 ≈ 𝑥(𝑘) given 𝑦 𝑘 , 𝑢 𝑘
and (𝐴, 𝐵, 𝐶, 𝐷)

▪ Key: generate estimate iteratively according to known system 
dynamics: 

ො𝑥 𝑘 + 1 = 𝐴ො𝑥 𝑘 + 𝐵𝑢 𝑘 + 𝑳 [𝒚(𝒌) − 𝑪ෝ𝒙(𝒌) − 𝑫𝒖 𝒌 ]

▪ Iteratively update state estimate using previous estimate ො𝑥 𝑘 and 
new data available at time 𝑘:    𝑢 𝑘 , 𝑦 𝑘 ,

▪ This way of estimating state is called Luenberger observer
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▪ State estimation error vector: 𝑒 𝑘 = 𝑥 𝑘 − ො𝑥(𝑘)

▪ Error dynamics: 𝑒 𝑘 + 1 = 𝐴 − 𝐿𝐶 𝑒 𝑘

▪ Goal: design 𝐿 matrix such that 𝑒𝑖𝑔𝑠(𝐴 − 𝐿𝐶) are at desired locations 
to ensure estimation error converge to zero with a desired transient 
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▪ Observer design: Find observer gain matrix 𝑳 such that error  
dynamics have desired eigenvalues

▪ Duality Theorem: (𝐴, 𝐶) observable ⇔ 𝐴𝑇 , 𝐶𝑇 controllable

(remark: We say a pair 𝐹,𝐻 is controllable if a system with “A” matrix equal to F 
and “B” matrix equal to H is controllable. This also means 𝑀𝑐 =
𝐻 𝐹𝐻 𝐹2𝐻 ⋯ 𝐹𝑛−1𝐻 is full rank) 
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▪ Consequence of the duality theorem:  If system (A,C) is 
observable, we can use feedback gain design method to find 
observer gain 𝐿 such that 𝑒𝑖𝑔(𝐴 − 𝐿𝐶) has desired eigs
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▪ Output feedback control procedure:

▪ System:  𝑥 𝑘 + 1 = 𝐴 𝑥 𝑘 + 𝐵𝑢 𝑘 , 𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)

▪ Find K, 𝐿 such that 𝐴 − 𝐵𝐾 and 𝐴 − 𝐿𝐶 have desired eigs

▪ At time 𝑘 = 0, pick arbitrary ො𝑥(0)

▪ For 𝑘 ≥0, given ො𝑥 𝑘 , 𝑢 𝑘 , 𝑦(𝑘), compute:

▪ ො𝑥(𝑘 + 1) = 𝐴ො𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐿 [𝑦(𝑘) − 𝐶 ො𝑥(𝑘) − 𝐷𝑢(𝑘)]

▪ 𝑢 𝑘 + 1 = −𝐾ො𝑥(𝑘 + 1)

▪ General guideline: 

eigenvalues of (A - BK) are chosen to meet the design specifications 
on the transient response. The eigenvalues of (A-LC) are chosen 
much faster than those of (A - BK)
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▪ Separation principle:  Observer eigs and controller eigs can be 
assigned separately 

▪ Closed-loop dynamics: joint state vector: 
𝑥(𝑘)
𝑒(𝑘)

with 𝑢 𝑘 = −𝐾ො𝑥(𝑘)

▪ Dynamics for joint state vector: 
𝑥(𝑘 + 1)
𝑒(𝑘 + 1)

=
𝐴𝑥 𝑘 + 𝐵𝑢(𝑘)

𝐴𝑥 𝑘 + 𝐵𝑢 𝑘 − 𝐴ො𝑥 𝑘 + 𝐵𝑢 𝑘 + 𝐿 𝑦 𝑘 − 𝐶 ො𝑥 𝑘 − 𝐷𝑢 𝑘

=
𝐴𝑥 𝑘 + 𝐵 −𝐾 ො𝑥 𝑘

𝐴 − 𝐿𝐶 𝑒(𝑘)
=

𝐴𝑥 𝑘 − 𝐵𝐾𝑥 𝑘 + 𝐵𝐾𝑒(𝑘)

𝐴 − 𝐿𝐶 𝑒(𝑘)

=
𝐴 − 𝐵𝐾 𝐵𝐾

0 𝐴 − 𝐿𝐶

𝑥(𝑘)

𝑒 𝑘

▪ The design of 𝐾 and 𝐿 can be done separately to meet specified 
controller and observer performance (characterized by eigs(A-BK) 
and eigs(A-LC)) 
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▪ Summary
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