Fall 2021 ME424 Modern Control and Estimation

Lecture Note 7: Kalman Filter - Probability Review

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Kalman Filer Preview:

Given stochastic linear system described by

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$y_k = C_k x_k + D_k u_k + v_k$$

• **Kalman filter**: compute the "best" estimate of x_k given input-output data history $\{u_j, y_j\}_{j=0}^k$

- From Luenberger to Kalman:
 - Deterministic to probabilistic model
 - Stable observer to optimal observer/filter

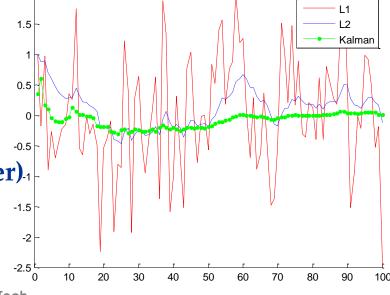
Kalman Filer Preview: Luenberger observer vs. Kalman filter

- Example: $x_{k+1} = x_k$, $y_k = x_k + v_k$, where v_k is white noise with $cov(v_k, v_m) = \begin{cases} 1, & \text{if } k = m \\ 0, & \text{otherise} \end{cases}$
 - Ignoring noise, we have deterministic model $x_{k+1} = x_k$, $y_k = x_k$,
 - Luenberger type observer: $\hat{x}_{k+1} = \hat{x}_k + L(y_k \hat{x}_k)$
 - Estimator error dynamics: e(k + 1) = (A LC)e(k) = (1 L)e(k)
 - E.g.: $L_1 = 0.9$ and $L_2 = 0.1$, both provide stable error dynamics

• According to deterministic model, L_1 should have smaller error

• However, with noise, both L_1 and L_2 perform poorly, L_1 is worse than L_2

■ The optimal observer (Kalman filter)₋₁ is much better



Kalman Filer Preview:

Given stochastic linear system described by

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$y_k = C_k x_k + D_k u_k + v_k$$

- **Kalman filter**: compute the "best" estimate of x_k given input-output data history $\{u_j, y_j\}_{j=0}^k$
- Kalman Filter Solution: $\hat{x}_k = E(x_k|y_0, y_1, ..., y_k)$

 Our goal: in-depth understanding of the assumptions, derivations of Kalman filter

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

What is probability?

- A formal way to quantify the uncertainty of our knowledge about the physical world
- Formalism: Probability Space (Ω, \mathcal{F}, P)
 - Ω : sampling space: a set of all possible outcomes (maybe infinite)
 - \mathscr{F} : **event space**: collection of events of interest (event is a subset of Ω)
 - $P: \mathcal{F} \to [0,1]$ probability measure: assign event in \mathscr{F} to a real number between 0 and 1

Axioms of probability:

- $P(A) \ge 0$
- $P(\Omega) = 1$
- $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Important consequences:

- $P(\emptyset) = 0$
- Law of total probability: $P(B) = \sum_{i=1}^{n} P(B \cap A_i)$, for any partitions $\{A_i\}$ of Ω
 - Recall a collection of sets $A_1, ..., A_n$ is called a partition of Ω if
 - $A_i \cap A_j = \emptyset$, for all $i \neq j$ (mutually exclusive)
 - $A_1 \cup A_2 \cdots \cup A_n = \Omega$

Conditional probability

 Probability of event A happens given that event B has already occurred

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- We assume P(B) > 0 in the above definition
- What does it mean?
 - Conditional probability is a probability: $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$
 - "Conditional" means, $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$ the is derived from an original probability space (Ω, \mathcal{F}, P) given some event has occurred
 - After B occurred we are uncertain only about the outcomes inside B

Bayes rule: relate $P(A \mid B)$ to $P(B \mid A)$ $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

- Events A and B are called (statistically) independent if
 - P(A|B) = P(A)
 - Or equivalently: $P(A \cap B) = P(A)P(B)$

Example of conditional probability: A bowl contains 10 chips of equal size: 5 red, 3 white, and 2 blue. We draw a chip at random and define the event:

A = the draw of a red or a blue chip

Suppose you are told the chip drawn is not blue, what is the new probability of A

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

- What is random variable and random vector?
 - Deterministic variable:

Random variable:

How to specify probability measure

Discrete random variable: probability mass function (pmf)
 e.g. toss a coin or die

Continuous random variable: probability density function (pdf)
 e.g. temperature density

How to specify probability measure

Random vector: scalar random variables listed according to certain order

• n-dimensional random vector:
$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

- Notation: We typically use capital to denote random variables (vectors) and lower case letter to denote specific values the random variable takes
- density function: f(x), $x \in \mathbb{R}^n$

• probability evaluation: $P(X \in A) = \int_A f(x) dx$

Expectation of a random vector $X \in \mathbb{R}^n$:

Continuous random vector: $E(X) = \int_{\mathbb{R}^n} x f(x) dx$

Discrete random vector: $E(X) = \sum_{x} x \cdot Prob(X = x)$

• Expectation:
$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{bmatrix}$$

■ Examples: Let $X \in R^2$ be discrete random variable with $Prob\left(X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \frac{1}{2}$, $Prob\left(X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right) = \frac{1}{3}$, $Prob\left(X = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right) = \frac{1}{6}$. Compute E(X)

Linearity of Expectation:

■ Expectation of AX with deterministic constant $A \in R^{m \times n}$ matrix: E(AX) = AE(X)

• More generally, E(AX + BY) = AE(X) + BE(Y)

Example: Suppose $X \in R^2, Y \in R^3$, with $E(X) = \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$, $E(Y) = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, Compute E(AX + BY)

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

Jointly distributed random vectors: $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$

• Completely determined by joint density (mass) function: $(X,Y) \sim f_{XY}(x,y)$

Compute probability:

■ marginal density: $X \sim f_X(x)$, $Y \sim f_Y(y)$, where $f_X(x) = \int_{R^m} f_{XY}(x,y) dy$, $f_Y(y) = \int_{R^n} f_{XY}(x,y) dx$,

- Example: $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, $Prob\left(X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \frac{1}{2}$, $Prob\left(X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right) = \frac{1}{3}$, $Prob\left(X = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right) = \frac{1}{6}$
 - This is joint distribution for X_1, X_2

- The conditional density: $(X, Y) \sim f_{XY}(x, y)$
 - Quantify how the observation of a value of Y, Y = y, affects your belief about the density of X
 - The conditional probability definition implies (nontrivially)

$$P(A \mid B) = P(A \cap B)/P(B) \Rightarrow p_{X|Y}(X = i \mid Y = j) = \frac{p_{XY}(X = i, Y = j)}{\sum_{i} p_{XY}(X = i, Y = j)}$$
$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$$

■ Law of total probability:
$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

$$f_X(x) = \int_{R^m} f_{X|Y}(x|y)f_Y(y)dy$$

$$f_Y(y) = \int_{R^n} f_{Y|X}(y|x)f_X(x)dx$$

■ *X* is independent of *Y*, denoted by $X \perp Y$, if and only if $f_{XY}(x,y) = f_X(x)f_Y(y)$

Conditional expectation:

• The conditional mean of X|Y = y is

$$E(X|Y = y) = \int_{R^n} x f_{X|Y}(x|y) dx$$
$$E(X|Y = y) = \sum_{i} i \cdot Prob(X = i|Y = y)$$

- Example 1:
 - E(X|Y=1)

	X				
	2	3	4	5	6
1	1/4	1/8	1/8		
Y^2		1/6	1/12	1/12	
3			1/12	1/24	1/24

• E(X | Y = 2)

- E(X|Y=3)
- **Example 2**: Suppose that (X, Y) is uniformly distributed on the square $S = \{(x, y) : -6 < x < 6, -6 < y < 6\}$. Find E(Y | X = x).

Law of total probability implies:

•
$$E(X) = \sum_{y} E(X|Y=y) \cdot p_Y(Y=y)$$

$$E(g(X,Y)) = \sum_{y} E(g(X,Y)|Y=y) \cdot p_{Y}(Y=y)$$

• Continue Example 1:

• Example 3.: outcomes with equal chance: (1,1), (2,0), (2,1), (1,0), (1,-1), (0,0), with $g(X,Y) = X^2Y^2$

Method 1:
$$E(g(X,Y)) = E(X^2Y^2) = 1^2 \cdot (-1)^2 \cdot \frac{1}{6} + 1^2 \cdot 1^2 \cdot \frac{1}{6} + 2^2 \cdot 1^2 \cdot \frac{1}{6} = 1$$

Method 2: conditioning on values of Y = -1, 0, 1

Covariance (Random variable case):

•
$$Cov(X,Y) = E((X - E(X))(Y - E(Y))$$

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

- Covariance (Random variable case):
 - If Cov(X,Y) > 0, X and Y are positively correlated
 - If you see a realization of X larger than E(X), it is more likely for Y to be also larger than E(Y)

- If Cov(X,Y) < 0, X and Y are negatively correlated
 - If you see a realization of X larger than E(X), it is more likely for Y to be smaller than E(Y)

• If Cov(X, Y) = 0, X and Y are uncorrelated

Covariance Matrix: $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$

$$Cov(X,Y) = E\left(\left(X - E(X)\right)\left(Y - E(Y)\right)^{T}\right)$$

• It is a $n \times m$ matrix: with $(Cov(X,Y))_{ij} = Cov(X_i,Y_j) = E((X_i - E(X_i))(Y_j - E(Y_j)))$

$$cov(X,Y) = \begin{bmatrix} cov(X_{1},Y_{1}) & cov(X_{1},Y_{2}) & \dots & cov(X_{1},Y_{m}) \\ cov(X_{2},Y_{1}) & cov(X_{2},Y_{2}) & \dots & cov(X_{2},Y_{m}) \\ \vdots & & \vdots & \ddots & \vdots \\ cov(X_{n},Y_{1}) & cov(X_{n},Y_{2}) & \dots & cov(X_{n},Y_{m}) \end{bmatrix}$$

Properties of Covariance

1.
$$Cov(X + a, Y + b) = Cov(X, Y)$$

2.
$$Cov(X,Y) = Cov(Y,X)^T$$

3.
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

4.
$$Cov(AX, BY) = ACov(X, Y)B^T$$

5. If
$$X \perp Y$$
, $Cov(X,Y) = 0$

6. Cov(X) ≜ Cov(X, X) is positive semidefinite (p.s.d.)

■ **Example**: Suppose you know $cov(X,Y) = \Sigma_{XY}$, $cov(X) = \Sigma_{X}$, $cov(Y) = \Sigma_{Y}$, what is Cov(AX + BY)?

Example: Given that $E(Z) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $Cov(Z, Z) = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 8 \end{bmatrix}$. Let $P = \begin{bmatrix} Z_2 \\ Z_1 \end{bmatrix}$, $Q = Z_3$ Compute: Cov(P, Q), Cov(Q, 2P)

More discussions