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Kalman Filer Preview:

= Given stochastic linear system described by
Xk+1 = Akxk + Bkuk + Wy
Vi = CkXi + Dyuge + v

= Kalman filter: compute the “best” estimate of x; given
k

input-output data history {uj, Vi } =0

* From Luenberger to Kalman:
= Deterministic to probabilistic model

= Stable observer to optimal observer/filter

Wei Zhang CLEAR Lab @ SUSTech



Kalman Filer Preview: Luenberger observer vs. Kalman filter

= Example: xg 11 = X, Yk = Xx + Vg, , Where vy, is white noise with
)1, ifk=m
cov(Vi, Un) = 0, otherise

= Ignoring noise, we have deterministic model xy.q = xx, yx = xp,

Luenberger type observer: X1 = X + L(yr — Xi)
Estimator error dynamics: e(k + 1) = (A — LC)e(k) = (1 — L)e(k)
E.g.:L; = 0.9 and L, = 0.1, both provide stable error dynamics

According to deterministic model, L; should have smaller error
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= However, with noise, both L; and
L, perform poorly, L, is worse than L,

= The optimal observer (Kalman filter).,
is much better 15
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Kalman Filer Preview:

= Given stochastic linear system described by
Xik+1 = Akxk + Bkuk + Wy
Yie = CiXpe + Dy + vy
= Kalman filter: compute the “best” estimate of x given

k

input-output data history {uj; Yj } i=0

= Kalman Filter Solution: x;, = E(xi|yo, Y1, ---» Vi )

= Our goal: in-depth understanding of the assumptions,
derivations of Kalman filter
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Jointly Distributed Random Vectors and Conditional Expectation
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What is probability?
= A formal way to quantity the uncertainty of our knowledge
about the physical world

= Formalism: Probability Space (Q, F, P)
= () : sampling space: a set of all possible outcomes (maybe infinite)

= 7 event space: collection of events of interest (event is a subset of
Q)

= P: F - [0,1] probability measure: assign event in Zto a real
number between 0 and 1
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Axioms of probability:
= P(4) >0
= P(Q) =1
»ANB=0=P(AUB) = P(4) + P(B)

= Important consequences:
" P(@) =0
= Law of total probability: P(B) =)!'P(BN4;), for any
partitions {4;} of Q
= Recall a collection of sets 4y, ..., A, is called a partition of Q if
= A;NAj =0, foralli #j (mutually exclusive)
= A,UA,UA, =0
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Conditional probability

= Probability of event A happens given that event B has already
occurred

P(ANB)
P(B)

* P(A|B) =

= We assume P(B) > 0 in the above definition

= What does it mean?
» Conditional probability is a probability: (Q, F, P)

= “Conditional” means, (Q,F,P) the is derived from an original
probability space ({), F, P) given some event has occurred

= After B occurred we are uncertain only about the outcomes inside B
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= Bayes rule: relate P(4 | B) to P(B|A)
P(B|A)P(A)
P(A|B) = P5)

= Events A and B are called (statistically) independent if
= P(A|B) = P(4)
= Or equivalently: P(ANn B) = P(A)P(B)
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= Example of conditional probability: A bowl contains 10 chips of
equal size: 5 red, 3 white, and 2 blue. We draw a chip at random and
define the event:

A = the draw of a red or a blue chip
Suppose you are told the chip drawn is not blue, what is the new probability of A
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= What is random variable and random vector?

» Deterministic variable:

= Random variable:
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How to specify probability measure
= Discrete random variable: probability mass function (pmf)

e.g. toss a coin or die

= Continuous random variable: probability density function (pdf)

e.g. temperature density
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How to specify probability measure

» Random vector: scalar random variables listed according to certain order

" n-dimensional random vector: X =

Notation: We typically use capital to denote random variables (vectors)
and lower case letter to denote specific values the random variable takes

density function: f(x), x € R"

probability evaluation: P(X € A) = [, f(x)dx

15
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Expectation of a random vector X € R™:

Continuous random vector: E(X) = | rn Xf (x)dx
Discrete random vector: E(X) = ), x - Prob(X = x)

E(X1)]

= Expectation: E(X) = E({(Z)

EX,) .

= Examples: Let X € R* be discrete random variable with
Prob(x =[] ])=3,Prob(x = []]) =3 Prob(x =[']) =+ Compute E (X)

2
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Linearity of Expectation:

= Expectation of AX with deterministic constant A € R"™*™ matrix:
E(AX) = AE(X)

= More generally, E(AX + BY) = AE(X) + BE(Y)

0.1
= Example: Suppose X € R%,Y € R3, with E(X) = [OO.ZSS ,,E(Y)=10.2
' 0.3

A=[1 1],B=[1 0 0

0 1 0 0 1], Compute E(AX + BY)
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Outline
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= Jointly Distributed Random Vectors and Conditional Expectation

» Covariance Matrix
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Jointly distributed random vectors: X € R",Y € R™

= Completely determined by joint density (mass) function:
(X; Y) ~ fXY(x; 3’)
Compute probability:

= marginal density: X ~ fx(x),Y ~ fy(y), where
fx(x) = mefXY(x; y)dy, fr(y) = fRanY(x» y)dx,

= Example: x = [ﬁﬂ  Prob (X - [(1) D =2, Prob (X - B D =2, Prob (X - [_11 D =2

= This is joint distribution for X, X,
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* The conditional density: (X,Y) ~ fxy(x,¥)

= Quantify how the observation of a value of Y, Y = y, affects your
belief about the density of X

= The conditional probability definition implies (nontrivially)
P(A| By=P(AnB)/P(B) = pxy (X = i|Y = j) = 2XEL=D

f ( ) 2 Dxy(X=0LY=])
_Ixy\%, Yy
fX|Y(x|)’) = ()

= Law of total probability: P(4) = }j-; P(AN B;) = Y., P(A|B;)P(B;)
fx(x) = fX|Y(x|}’)fY(Y)dY

Rm

fry) = fY|X(J’|X)fX(x)dX
Rn

= X is independent of Y, denoted by X 17,
if and only if fxy(x,y) = fx(X) fy(y)
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= Conditional expectation:
* The conditional mean of X|Y = y is

EQXIY = y) = j Xfie Cely)dx

Rn

EX|Y =vy) =2i-Prob(X= iy =vy)

i

= Example 1: ) s 4X s
= EXIY=1) 1| 14 18 178
y 2 1/6 112 1/12
3 112 1/24 1/24
= E(X1Y =2)
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= E(X1Y=3)

= Example 2: Suppose that (X,Y ) is uniformly distributed on the square § =
{(x,y): =6 <x < 6,—6 <y <6LFINdE(Y|X = x).
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= Law of total probability implies:
" EX) =2y EX|Y =y) -py(Y =)

" E(gX, V) =X, E@X VY =3) - py(Y =)
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= Continue Example 1:

Wei Zhang
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X

2 3 4 5 6
1 /4 1/8 1/8
y 2 1/6 1/12 1/12
3 /12 1/24 1/24
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= Example 3.: outcomes with equal chance: (1,1), (2, 0), (2,1), (1,0),
(1,-1), (0,0), with g(X,Y) = X?Y?
Method 1: E(g(X,Y)) = E(X?Y?) = 12 (-1)2 - =+ 1212 .24 22 . 12 .= = 1

Method 2: conditioning on values of Y = —1,0,1

X
0 1 2

1] 0 16 0
y O [ 1/6 176 176
1o 16 176
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» Covariance (Random variable case):

« Cov(X,Y) = E ((X —~EQO)(Y — E(Y))

X
1 2

-1 | 025 0.1
1 0O 0.65
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= Covariance (Random variable case):

=If Cov(X,Y) > 0, X and Y are positively correlated

= [If you see a realization of X larger than E (X), it is more likely for Y to be also
larger than E(Y)

=If Cov(X,Y) < 0, X and Y are negatively correlated

= If you see a realization of X larger than E (X), it is more likely for Y to be smaller
than E(Y)

o If Cov(X,Y) =0, X and Y are uncorrelated
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» Covariance Matrix: X € R*, Y € R™
Cov(X,Y) = E ((X —~ECO)(Y - E(Y))T)

» [tis a n X m matrix: with (Cov(X,Y));; = Cov(X; ;) = E ((Xi — E(Xy) (Yj -

E(Y)))

cov(Xy,Y;) cov(Xy,Y,) .. cov(Xy,Y,)
cov(X,Y) = COV():(z;Yﬂ COV():(zjyz) COU()fz,Ym)
cov(X,,Y;) cov(X,,Y;) .. cov(X, Yym)
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= Properties of Covariance
1. Cov(X +a,Y+b) =Cov(X,Y)

2. Cov(X,Y) = Cov(Y,X)T

3 Cov(X{+X,,Y) =Cov(Xy,Y) + Cov(X,,Y)
4. Cov(AX,BY) = ACov(X,Y)BT

5. f X 1Y, Cov(X,Y)=0

6. Cov(X) £ Cov(X,X) is positive semidefinite (p.s.d.)
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= Example: Suppose you know cov(X,Y) = Zxy,
Yy, cov(Y) = Xy, what is Cov(AX + BY)?

Wei Zhang CLEAR Lab @ SUSTech

cov(X) =
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1
2

3
Compute: Cov(P,Q), Cov(Q,2P)

= Example: Given that £(2) =

Wei Zhang

], and Cov(Z,Z) =
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_[42] 5 _
. LetP = lzll, Q =25
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= More discussions
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