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Kalman Filer Preview:

▪ Given stochastic linear system described by
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

▪ Kalman filter: compute the “best”  estimate of 𝑥𝑘 given 

input-output data history 𝑢𝑗 , 𝑦𝑗 𝑗=0

𝑘

▪ From Luenberger to Kalman:

▪ Deterministic to probabilistic model

▪ Stable observer to optimal observer/filter
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Kalman Filer Preview: Luenberger observer vs. Kalman filter

▪ Example: 𝑥𝑘+1 = 𝑥𝑘, 𝑦𝑘 = 𝑥𝑘 + 𝑣𝑘, , where 𝑣𝑘 is white noise with 

𝑐𝑜𝑣 𝑣𝑘 , 𝑣𝑚 = ቊ
1, if 𝑘 = 𝑚
0, otherise

▪ Ignoring noise, we have deterministic model  𝑥𝑘+1 = 𝑥𝑘,  𝑦𝑘 = 𝑥𝑘, 

▪ Luenberger type observer: ො𝑥𝑘+1 = ො𝑥𝑘 + 𝐿(𝑦𝑘 − ො𝑥𝑘)

▪ Estimator error dynamics: 𝑒 𝑘 + 1 = 𝐴 − 𝐿𝐶 𝑒 𝑘 = 1 − 𝐿 𝑒(𝑘)

▪ E.g.: 𝐿1 = 0.9 and 𝐿2 = 0.1, both provide stable error dynamics

▪ According to deterministic model,  𝐿1 should have smaller error

▪ However, with noise, both 𝐿1 and
𝐿2 perform poorly, 𝐿1 is worse than 𝐿2

▪ The optimal observer (Kalman filter) 
is much better
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Kalman Filer Preview:

▪ Given stochastic linear system described by
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

▪ Kalman filter: compute the “best”  estimate of 𝑥𝑘 given 

input-output data history 𝑢𝑗 , 𝑦𝑗 𝑗=0

𝑘

▪ Kalman Filter Solution: ො𝑥𝒌 = 𝑬 𝒙𝒌 𝒚𝟎, 𝒚𝟏, … , 𝒚𝒌

▪ Our goal: in-depth understanding of the assumptions,
derivations of Kalman filter
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Outline

▪ Probability and Conditional Probability

▪ Random Variables and Random Vectors

▪ Jointly Distributed Random Vectors and Conditional Expectation

▪ Covariance Matrix
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What is probability?

▪ A formal way to quantify the uncertainty of our knowledge 
about the physical world

▪ Formalism: Probability Space Ω,ℱ, 𝑃

▪ Ω : sampling space:  a set of all possible outcomes (maybe infinite)

▪ ℱ : event space: collection of events of interest (event is a subset of 
Ω)

▪ 𝑃: ℱ → [0,1] probability measure:  assign event  in ℱ to a real 
number between 0 and 1
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Axioms of probability:

▪ 𝑃 𝐴 ≥ 0

▪ 𝑃 Ω = 1

▪ 𝐴 ∩ 𝐵 = ∅ ⇒ 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵

▪ Important consequences:

▪ 𝑃 ∅ = 0

▪ Law of total probability: 𝑃 𝐵 = σ𝑖
𝑛𝑃(𝐵 ∩ 𝐴𝑖) , for any

partitions {𝐴𝑖} of Ω

▪ Recall a collection of sets 𝐴1, … , 𝐴𝑛 is called a partition of Ω if

▪ 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for all 𝑖 ≠ 𝑗 (mutually exclusive)

▪ 𝐴1 ∪ 𝐴2⋯∪ 𝐴𝑛 = Ω
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Conditional probability

▪ Probability of event 𝐴 happens given that event 𝐵 has already 
occurred 

• 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵

▪ We assume 𝑃(𝐵) > 0 in the above definition

▪ What does it mean?

▪ Conditional probability is a probability: ෩Ω, ෨ℱ, ෨𝑃

▪ “Conditional” means, ෩Ω, ෨ℱ, ෨𝑃 the is derived from an original 
probability space Ω,ℱ, 𝑃 given some event has occurred 

▪ After 𝐵 occurred we are uncertain only about the outcomes inside 𝐵
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▪ Bayes rule: relate 𝑃(𝐴│𝐵) to 𝑃(𝐵|𝐴)

𝑃(𝐴│𝐵) =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵

▪ Events 𝐴 and 𝐵 are called (statistically) independent if

▪ 𝑃 𝐴 𝐵 = 𝑃 𝐴

▪ Or equivalently: 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)
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▪ Example of conditional probability: A bowl contains 10 chips of 
equal size: 5 red, 3 white, and 2 blue. We draw a chip at random and 
define the event: 

𝐴 = the draw of a red or a blue chip

Suppose you are told the chip drawn is not blue, what is the new probability of 𝐴
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Outline

▪ Probability and Conditional Probability

▪ Random Variables and Random Vectors

▪ Jointly Distributed Random Vectors and Conditional Expectation

▪ Covariance Matrix
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▪ What is random variable and random vector?

▪ Deterministic variable:

▪ Random variable:
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How to specify probability measure

▪ Discrete random variable: probability mass function (pmf)

e.g. toss a coin or die

▪ Continuous random variable: probability density function (pdf)

e.g. temperature density
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How to specify probability measure

▪ Random vector: scalar random variables listed according to certain order

▪ n-dimensional random vector: 𝑋 =

𝑋1
𝑋2
⋮
𝑋𝑛

▪ Notation: We typically use capital to denote random variables (vectors) 
and lower case letter to denote specific values the random variable takes

▪ density function: 𝑓(𝑥), 𝑥 ∈ R𝑛

▪ probability evaluation: 𝑃 𝑋 ∈ 𝐴 = 𝐴׬ 𝑓 𝑥 𝑑𝑥
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Expectation of a random vector 𝑿 ∈ 𝑹𝒏:

Continuous random vector: 𝑬 𝑿 = 𝑹𝒏׬ 𝒙𝒇 𝒙 𝒅𝒙

Discrete random vector: 𝑬 𝑿 = σ𝒙𝒙 ⋅ 𝑷𝒓𝒐𝒃(𝑿 = 𝒙)

▪ Expectation: 𝐸 𝑋 =

𝐸 𝑋1
𝐸(𝑋2)

⋮
𝐸(𝑋𝑛)

▪ Examples: Let 𝑋 ∈ 𝑅2 be discrete random variable with 
𝑃𝑟𝑜𝑏 𝑋 =

0
1

=
1

2
, 𝑃𝑟𝑜𝑏 𝑋 =

1
2

=
1

3
, 𝑃𝑟𝑜𝑏 𝑋 =

−1
1

=
1

6
. Compute 𝐸(𝑋)
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Linearity of Expectation:

▪ Expectation of 𝐴𝑋 with deterministic constant 𝐴 ∈ 𝑅𝑚×𝑛 matrix: 
𝑬 𝑨𝑿 = 𝑨𝑬(𝑿)

▪ More generally,  𝐸 𝐴𝑋 + 𝐵𝑌 = 𝐴𝐸 𝑋 + 𝐵𝐸(𝑌)

▪ Example: Suppose X ∈ 𝑅2, 𝑌 ∈ 𝑅3, with E(𝑋) =
0.5
0.25

, , E(𝑌) =
0.1
0.2
0.3

, 

𝐴 =
1 1
0 1

, 𝐵 =
1 0 0
0 0 1

, Compute 𝐸(𝐴𝑋 + 𝐵𝑌)
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Outline

▪ Probability and Conditional Probability

▪ Random Variables and Random Vectors

▪ Jointly Distributed Random Vectors and Conditional Expectation

▪ Covariance Matrix
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Jointly distributed random vectors: 𝑿 ∈ 𝑹𝒏, 𝒀 ∈ 𝑹𝒎

▪ Completely determined by joint density (mass) function: 
𝑋, 𝑌 ∼ 𝑓𝑋𝑌 𝑥, 𝑦

Compute probability:

▪ marginal density: 𝑋 ∼ 𝑓𝑋 𝑥 , 𝑌 ∼ 𝑓𝑌(𝑦), where 

𝑓𝑋 𝑥 = ׬
𝑅𝑚

𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑦,        𝑓𝑌 𝑦 = ׬
𝑅𝑛
𝑓𝑋𝑌 𝑥, 𝑦 𝑑x, 

▪ Example: X = 𝑋1
𝑋2

, 𝑃𝑟𝑜𝑏 𝑋 =
0
1

=
1

2
, 𝑃𝑟𝑜𝑏 𝑋 =

1
2

=
1

3
, 𝑃𝑟𝑜𝑏 𝑋 =

−1
1

=
1

6

▪ This is joint distribution for 𝑋1, 𝑋2
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▪ The conditional density: 𝑋, 𝑌 ∼ 𝑓𝑋𝑌(𝑥, 𝑦)

▪ Quantify how the observation of a value of Y, 𝑌 = 𝑦, affects your 
belief about the density of 𝑋

▪ The conditional probability definition implies (nontrivially)

𝑃(𝐴│𝐵)=𝑃(𝐴∩𝐵)/𝑃(𝐵) ⇒ 𝑝𝑋|𝑌 𝑋 = 𝑖 𝑌 = 𝑗 =
𝑝𝑋𝑌 𝑋=𝑖,𝑌=𝑗

σ𝑖 𝑝𝑥𝑦(𝑋=𝑖,𝑌=𝑗)

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋𝑌 𝑥, 𝑦

𝑓𝑌(𝑦)

▪ Law of total probability: 𝑃 𝐴 = σ𝑖=1
𝑛 𝑃 𝐴 ∩ 𝐵𝑖 = σ𝑖=1

𝑛 𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)

𝑓𝑋 𝑥 = න
𝑅𝑚
𝑓𝑋|𝑌 𝑥 𝑦 𝑓𝑌 𝑦 𝑑𝑦

𝑓𝑌 𝑦 = න
𝑅𝑛
𝑓𝑌|𝑋 𝑦 𝑥 𝑓𝑋 𝑥 𝑑𝑥

▪ 𝑿 is independent of 𝒀, denoted by 𝑋 ⊥ 𝑌, 
if and only if     𝑓𝑋𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌(𝑦)
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2 3 4 5 6

1 1/4 1/8 1/8

2 1/6 1/12 1/12

3 1/12 1/24 1/24

▪ Conditional expectation:

▪ The conditional mean of 𝑋|𝑌 = 𝑦 is 

𝐸 𝑋 𝑌 = 𝑦 = න
𝑅𝑛
𝑥𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥

𝐸 𝑋 𝑌 = 𝑦 =෍

𝑖

𝑖 ⋅ 𝑃𝑟𝑜𝑏(𝑋 = 𝑖|𝑌 = 𝑦)

▪ Example 1: 

▪ E(X|Y = 1)

▪ E(X|Y = 2)

21
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▪ E(X|Y=3)

▪ Example 2: Suppose that (𝑋, 𝑌 ) is uniformly distributed on the square 𝑆 =
{(𝑥, 𝑦) ∶ −6 < 𝑥 < 6,−6 < 𝑦 < 6}. Find 𝐸(𝑌 |𝑋 = 𝑥).
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▪ Law of total probability implies:

▪ 𝐸 𝑋 = σ𝑦𝐸 𝑋 𝑌 = 𝑦 ⋅ 𝑝𝑌(𝑌 = 𝑦)

▪ 𝐸 𝑔 𝑋, 𝑌 = σ𝑦𝐸 𝑔 𝑋, 𝑌 𝑌 = 𝑦 ⋅ 𝑝𝑌 𝑌 = 𝑦

23
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▪ Continue Example 1:

24
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▪ Example 3.: outcomes with equal chance: (1,1), (2, 0), (2,1), (1,0), 
(1,-1), (0,0), with g 𝑋, 𝑌 = 𝑋2𝑌2

25

0 1 2

-1 0 1/6 0

0 1/6 1/6 1/6

1 0 1/6 1/6

𝑋

𝑌

Method 1: 𝐸 𝑔 𝑋, 𝑌 = 𝐸 𝑋2𝑌2 = 12 ⋅ −1 2 ⋅
1

6
+ 12 ⋅ 12 ⋅

1

6
+ 22 ⋅ 12 ⋅

1

6
= 1

Method 2: conditioning on values of 𝑌 = −1, 0, 1
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▪ Covariance (Random variable case):

▪ 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 (𝑌 − 𝐸(𝑌)

26
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-1 0.25 0.1

1 0 0.65

𝑋
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Outline

▪ Probability and Conditional Probability

▪ Random Variables and Random Vectors

▪ Jointly Distributed Random Vectors and Conditional Expectation

▪ Covariance Matrix
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▪ Covariance (Random variable case):

▪ If 𝐶𝑜𝑣 𝑋, 𝑌 > 0, 𝑋 and 𝑌 are positively correlated

▪ If you see a realization of 𝑋 larger than 𝐸(𝑋), it is more likely for 𝑌 to be also 
larger than 𝐸 𝑌

▪ If 𝐶𝑜𝑣 𝑋, 𝑌 < 0, 𝑋 and Y are negatively correlated

▪ If you see a realization of 𝑋 larger than 𝐸(𝑋), it is more likely for 𝑌 to be smaller 
than 𝐸 𝑌

▪ If 𝐶𝑜𝑣 𝑋, 𝑌 = 0, 𝑋 and 𝑌 are uncorrelated
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▪ Covariance  Matrix: 𝑿 ∈ 𝑹𝒏 , 𝒀 ∈ 𝑹𝒎

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌
𝑇

▪ It is a 𝑛 × 𝑚 matrix: with (𝐶𝑜𝑣 𝑋, 𝑌 )𝑖𝑗 = Cov Xi, Yj = E൬

൰

(Xi − E Xi ) ቀ

ቁ

Yj −

E Yj

29

𝑐𝑜𝑣 𝑋, 𝑌 =

𝑐𝑜𝑣 𝑋1, 𝑌1 𝑐𝑜𝑣 𝑋1, 𝑌2 … 𝑐𝑜𝑣 𝑋1, 𝑌𝑚
𝑐𝑜𝑣 𝑋2, 𝑌1 𝑐𝑜𝑣 𝑋2, 𝑌2 … 𝑐𝑜𝑣 𝑋2, 𝑌𝑚

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣 𝑋𝑛, 𝑌1 𝑐𝑜𝑣 𝑋𝑛, 𝑌2 … 𝑐𝑜𝑣 𝑋𝑛, 𝑌𝑚
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▪ Properties of Covariance

1. 𝐶𝑜𝑣 𝑋 + 𝑎, 𝑌 + 𝑏 = 𝐶𝑜𝑣(𝑋, 𝑌)

2. 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐶𝑜𝑣 𝑌, 𝑋 𝑇

3. 𝐶𝑜𝑣 𝑋1 + 𝑋2, 𝑌 = 𝐶𝑜𝑣 𝑋1, 𝑌 + 𝐶𝑜𝑣 𝑋2, 𝑌

4. 𝐶𝑜𝑣 𝐴𝑋, 𝐵𝑌 = 𝐴𝐶𝑜𝑣 𝑋, 𝑌 𝐵𝑇

5. If 𝑋 ⊥ 𝑌, 𝐶𝑜𝑣 𝑋, 𝑌 = 0

6. 𝐶𝑜𝑣 𝑋 ≜ 𝐶𝑜𝑣(𝑋, 𝑋) is positive semidefinite (p.s.d.)
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▪ Example: Suppose you know  𝑐𝑜𝑣 𝑋, 𝑌 = Σ𝑋𝑌, 𝑐𝑜𝑣 𝑋 =
Σ𝑋, 𝑐𝑜𝑣 𝑌 = Σ𝑌, what is 𝐶𝑜𝑣 𝐴𝑋 + 𝐵𝑌 ?
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▪ Example: Given that 𝐸 𝑍 =
1
2
3
, and 𝐶𝑜𝑣 𝑍, 𝑍 =

2 1 0
1 4 1
0 1 8

.  Let 𝑃 =
𝑍2
𝑍1

, 𝑄 = 𝑍3

Compute: 𝐶𝑜𝑣(𝑃, 𝑄),  𝐶𝑜𝑣(𝑄, 2𝑃)
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▪ More discussions
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