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Kalman Filer Preview:

= Given stochastic linear system described by
Xk+1 = Akxk + Bkuk + wy,
Vi = CrXje + Deuy + vy

= Kalman filter: compute the “best” estimate of x; given
k

input-output data history {uj; Yj } =0

» Kalman Filter Solution: X;, = E(xk|Yo, Y1, ---» Vi )

= Our goal: in-depth understanding of the assumptions,
derivations of Kalman filter
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Outline

* Minimum Mean Squared Estimation (MMSE)

» Gaussian Random Vectors

Kalman Filter Derivations

Summary and Implementation
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Fundamental Theorem of Estimation

= Suppose we want to estimate the value of a hidden random vector
X € R™ based on observations of a related vector Y € R™.

= We have to know the relationship between X and Y. Suppose we take
probabilistic viewpoint of their relations, namely, (X, Y) ~ fxy(x,y)

= An estimator ¢(y) is a function that maps each measurement Y = y
to an estimate X

d(y)

L»[Es’rimo’ror]—xv

2
= Mean-squared error of an estimator: E (| |p(Y) — X| | )
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X
= Example: Given XY joint distribution, compute 2 3
the mean-squared error for the estimator: 1 | 04 01
Y
¢(y) =2y 2 | 02 03
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= Theorem: The Minimum Mean-Squared Estimator for X given
Y = y, that minimizes E (| |p(Y) — X| |2) is given by
Xumse = Oumse ) = EX|Y = y)

Proof: X € R",Y € R™, ¢:R™ — R™, need to solve rg(i_glE (||¢>(Y) —X||2)

Note: E (||q,’>(Y) — X||2) =[E (||<,1)(Y) — X||2| Y = y) fr(¥)dy, thus we just need to find the
estimator ¢(-) to minimize E (| |p(Y) — X| |2| Y = y) for each y

E([lo) = xI[°lY = y) = E(6() = 00T (1) =X)IY =)
= E(¢M) 7)) — ()X — XTp(Y) + XTX|Y =)

=E(¢MTopMIY =y) —E(pM)TX|Y =y) —E(XTo(M)|Y =y) + EXTX|Y = y)
=p(NTP(Y) —20WMTEXIY =y) + E(XTXIY = y)

=(p() —EX|Y =) (¢(y) — EX|Y = y)) — EX|Y = WTEX|Y = y) + E(XTX|Y = y)

> Optimal ¢ is thus given by: ¢(y) = E(X|Y = y)
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= Remarks:
= 1. The MMSE is just the conditional mean !!

= 2. To compute the MMSE, the general way is to compute the
conditional mean directly

= 3. Important special case:

If (X,Y) are jointly Gaussian random vectors, then there is a
simple analytical form for the conditional mean
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» Gaussian Random Vectors
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= Important due to central limit theorem
= 1D Gaussian: X ~ N(u,0),u € R,0 € R,
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= Gaussian random vectors have nice properties

It can be presented by two parameters:

mean vector and covariance matrix

Fact 1: Uncorrelated jointly Gaussian vectors are independent

Fact 2: Linear transformation of Gaussian random vectors are
Gaussian

Fact 3: Conditional Gaussian is Gaussian

= [f general, checking whether a random variable is Gaussian or not
requires computing its probability density function to see whether it is of
the form of Gaussian. This can be quite involved.
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= Fact 1: Independence between two Gaussians:
= [f X € R",Y € R™ are jointly Gaussians, then X 1 Y if and only if
E(XYT)=EX)-E(Y)T
Cov(X,Y)=0

= However, if X, Y are both Gaussians, but are not jointly Gaussian,
then the above tests do not hold in general

= See supplemental note on joint Gaussian random vectors
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» Fact 2: Affine transformation of Gaussian is still Gaussian
LetX ~N(u,X),u € R\, X € RV A€ R™" b e R™, then

Z=AX+b ~N(Au+ b, AZAT)

» This can be used to test whether a random variable is Gaussian or not

X1 1 0 -1 H1
Example: X ~ N(u,2),X = [X2|,Z=10 2 1|, u=[H2|,
-1 1 3 U3

» [s X, Guassian?
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" Is Z = a,X, + azX3 a Gaussian?

X
n[sY = [ Xll a Gaussian?
3

= [s XZ 1 Xl? How about X]_ and X3
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» Fact 3: Conditional Gaussian is Gaussian: Let X € R",Y € R™
be jointly Gaussian with mean uy, py, covariance Zx, Ly, Zxy, Zyx,

R

then the conditional distribution of X given Y = y is Gaussian
X|Y =y ~ N(uxjy=y, Zx|y=y),
where

Ixjy=y = Ux + ZxyZy ' (¥ — py)

Zxy=y = Zx — ZxyZy Zyx
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= Example: suppose Z = [ﬂ, where X € R4)Y € R, and Z ~ N(
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A
= Another example: Z=|Z,|, Z~N
Z3
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. 41 14 1 _ 11 O
MMSE example: X ~ N ([4] , [1 5 ), letY = 1 4] X+,
whereV ~ N ([8] , [é (1) ), V is independent of X. Find the MMSE of X

given Y = [ﬂ
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= solution (continue)

Wei Zhang
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Kalman Filter

= Consider a stochastic linear system described by
Xp+1 = ApXy + Bruy + wy
Vi = CkXi + Dy + vy
" X € R"--- system state at time k
" v, € R™ --- measurement vector at time k

« Y 2 [yl oyl oy ]T --- collection of measurements up to time k
= u;, € RP--- system input at time k (deterministic input)

= wy € R"--- process noise ~ N (0, Q)

* Y, € RP--- measurement noise ~ N(0, Ry,)

= Assume xy ~ N(ug, @), xo L Wy, xo L Vi, Wi L v, Vk

= Implications of the above assumption:
» x; is Gaussian and y;, is Gaussian for all k = 0 (VFY)
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= State estimation problem: Find the MMSE of x;, given Yy
= Solution using Fundamental Theorem: E (x;|Y)

= Kalman filter is just a recursive way to compute the
conditional mean as new measurement comes in

= Define: Xy, = E(Qxx|Ye),  Xipe—1 = E | Vie—1)
. o NT
P = E ((xk — Rpepe ) O — R |Yk)
Prjx—1 =E ((xk — Rpepe—1) (X — fk|k—1)T|Yk—1)

= Simplified notation: X, £ X, Px = Pyi
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= Before deriving Kalman filter, let’s work on an example

/

where x, ~ N(0,,Z,), wy

Example:

~N(0,%,),A =

X1 = Apxy + wy
Vi = Crxy

-y S

\Compute Ro = E(xglyo =1 and Xy = E(xq|yy = 1,y, = —

ﬂ,c=[1 2].

/

Wei Zhang
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Example continue..

Wei Zhang
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Example continue...

Wei Zhang
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Derivation of Kalman Filter

» Goal of Kalman Filter: obtain recursive formula
{fk} S {k\k+1}
Py Py 1

= We can compute X, Py

= Given Xy, Py, how to compute X 1, Px+1: divide this recursion into
two stages: prediction and measurement update
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= Step 1: prediction (try to compute Xy 11|k, Pi+1)x using Xy, Py

= Summary of the prediction step:
Xks1k = ArXy + Bruy,
Pri1je = AxPrAk + Qy
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= Step 2: measurement update
= We want X1 = E(Xg411Yis1) = EXpg1Yi Yiew1)

= Up to now, we have X1 and Pyqx, i.e. the mean and covariance
of conditional random variable x4 |Yx

= How to find the mean and covariance of xy .1 [{Yx, Vi+1}
= Define Z = xp 41|V, W = yi41lYi = Xy = E(Z|W)
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» Derivation (continue)

Wei Zhang
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= Complete derivation will be posted online
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Kalman Filter Notations

ﬁtem model Noise model

X1 = AX + BU +W, Wi ~ N(0, Q)
Y, =C.X +Du, +V, v ~ N(O, Ry)
Filtered estimate Filter error

R = R = E(elY) 8 =% — X, with E(e)=0

Predicted estimate Prediction error

kal =E (Xk |Yk—1) Caka = X — X with E (ek|k—1) =0

Measurement history \

Y ={Yo: Vireees Yic}

Filter error covariance

R =E(eef)=E(eer|Y,)

Prediction error covariance

Pk|k—1 =E (ek|k—1e;-|k—1) =E (ek|k—lel|k—l |Yk—1)

Some facts:
* Unbiasedness: E(ek):o E(eklk_l)zo

* Error covariance equals the conditional error covariance

E (ekel ) =E (ekeg | Y ) E (eklk—lellk—l) =E (eklkfle;“‘*l |Y"*l)

2 2
* Mean squared error: E(HekH ):trace(Pk), E(Heklk_lH ):

trace( PRy,
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Kalman Filter Diagram
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Prediction

1. Predict state ahead
Xk-1 = A X+ B Uy

2. Prediction error covariance

\ Pk = A1<—1Pk—1A<T—1 + Qy

~

Initial
condition

1%, o}

k=k+1

1. Compute Kalman gain

Ky = Pk|k—1CI-(r (Ck P|<||<—1CkT + Rk)

2. Update estimate

-1

X = Xk Ky (YK _Cka|k-1 - Dkuk)

3. Update error covariance

Pk = (I - Kka ) Pk|k—1

r

J

Either of the two initial conditions is enough to start the iteration
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Coding Example
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