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Kalman Filer Preview:

▪ Given stochastic linear system described by
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

▪ Kalman filter: compute the “best”  estimate of 𝑥𝑘 given 

input-output data history 𝑢𝑗 , 𝑦𝑗 𝑗=0

𝑘

▪ Kalman Filter Solution: ො𝑥𝒌 = 𝑬 𝒙𝒌 𝒚𝟎, 𝒚𝟏, … , 𝒚𝒌

▪ Our goal: in-depth understanding of the assumptions, 
derivations of Kalman filter 
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Outline

▪ Minimum Mean Squared Estimation (MMSE)

▪ Gaussian Random Vectors

▪ Kalman Filter Derivations

▪ Summary and Implementation

3
CLEAR Lab @ SUSTechWei Zhang



CLEAR Lab @ SUSTechWei Zhang

Fundamental Theorem of Estimation

▪ Suppose we want to estimate the value of a hidden random vector  
𝑋 ∈ R𝑛 based on observations of a related vector 𝑌 ∈ R𝑚.  

▪ We have to know the relationship between 𝑋 and 𝑌. Suppose we take 
probabilistic viewpoint of their relations, namely, (𝑋, 𝑌) ∼ 𝑓𝑋𝑌 𝑥, 𝑦

▪ An estimator 𝜙 𝑦 is a function that maps each measurement Y = 𝑦
to an estimate ො𝑥

▪ Mean-squared error of an estimator: 𝑬 𝝓 𝒀 − 𝑿
𝟐
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▪ Example: Given X,Y joint distribution, compute 
the mean-squared error for the estimator: 

𝜙 𝑦 = 2𝑦
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▪ Theorem: The Minimum Mean-Squared Estimator for 𝑿 given 

𝒀 = 𝒚, that minimizes 𝑬 𝝓 𝒀 − 𝑿
𝟐

is given by
෡𝑿𝑴𝑴𝑺𝑬 = 𝝓𝑴𝑴𝑺𝑬 𝒚 = 𝑬 𝑿 𝒀 = 𝒚

Proof : 𝑋 ∈ 𝑅𝑛, 𝑌 ∈ 𝑅𝑚, 𝜙: R𝑚 → 𝑅𝑛, need to solve min
𝜙 ⋅

𝐸 𝜙 𝑌 − 𝑋
2

Note:   𝐸 𝜙 𝑌 − 𝑋
2

= ∫ 𝐸 𝜙 𝑌 − 𝑋
2
| 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦, thus we just need to find the 

estimator 𝜙 ⋅ to minimize 𝐸 𝜙 𝑌 − 𝑋
2
| 𝑌 = 𝑦 for each 𝑦

𝐸 𝜙 𝑌 − 𝑋
2
|𝑌 = 𝑦 = 𝐸 𝜙 𝑌 − 𝑋 𝑇 𝜙 𝑌 − 𝑋 |𝑌 = 𝑦

= 𝐸 𝜙 𝑌 𝑇𝜙 𝑌 − 𝜙 𝑌 𝑇𝑋 − 𝑋𝑇𝜙 𝑌 + 𝑋𝑇𝑋|𝑌 = 𝑦

= 𝐸 𝜙 𝑌 𝑇𝜙 𝑌 |𝑌 = 𝑦 − 𝐸 𝜙 𝑌 𝑇𝑋|𝑌 = 𝑦 − 𝐸 𝑋𝑇𝜙 𝑌 |𝑌 = 𝑦 + 𝐸(𝑋𝑇𝑋|𝑌 = 𝑦) 

= 𝜙 𝑦 𝑇𝜙 𝑦 − 2𝜙 𝑦 𝑇𝐸 𝑋|𝑌 = 𝑦 + 𝐸 𝑋𝑇𝑋|𝑌 = 𝑦

= 𝜙 𝑦 − 𝐸 𝑋|𝑌 = 𝑦
𝑇
𝜙 𝑦 − 𝐸 𝑋|𝑌 = 𝑦 − 𝐸 𝑋|𝑌 = 𝑦 𝑇𝐸 𝑋|𝑌 = 𝑦 + 𝐸 𝑋𝑇𝑋|𝑌 = 𝑦
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Optimal 𝜙 is thus given by: 𝜙 𝑦 = 𝐸 𝑋|𝑌 = 𝑦



CLEAR Lab @ SUSTechWei Zhang

▪Remarks:

▪ 1. The MMSE is just the conditional mean !!

▪ 2. To compute the MMSE, the general way is to compute the 
conditional mean directly

▪ 3. Important special case: 

If 𝑿, 𝒀 are jointly Gaussian random vectors, then there is a 
simple analytical form for the conditional mean
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Outline

▪ Minimum Mean Squared Estimation (MMSE)

▪ Gaussian Random Vectors

▪ Kalman Filter Derivations

▪ Summary and Implementation

8
CLEAR Lab @ SUSTechWei Zhang



CLEAR Lab @ SUSTechWei Zhang

▪ Gaussian Random Vectors

▪ Important due to central limit theorem

▪ 1D Gaussian: 𝑿 ∼ 𝑵 𝝁, 𝝈 , 𝜇 ∈ 𝑅, 𝜎 ∈ 𝑅+

pdf : 𝒇𝑿 𝒙 =
𝟏

𝟐𝝅𝝈𝟐
𝒆
−

𝒙−𝝁 𝟐

𝟐𝝈𝟐

▪ n-D Gaussian: 𝑿 ∼ 𝑵 𝝁, 𝚺 , 𝜇 ∈ 𝑅𝑛, Σ ∈ 𝑅𝑛×𝑛

pdf:       𝒇𝑿 𝒙 =
𝟏

𝟐𝝅
𝒏
𝟐 𝐝𝐞𝐭(𝚺)

𝟏
𝟐

𝐞𝐱𝐩{−
𝟏

𝟐
𝐱 − 𝝁 𝑻𝚺−𝟏 𝒙 − 𝝁 }
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▪ Gaussian random vectors have nice properties

▪ It can be presented by two parameters: 

mean vector and covariance matrix

▪ Fact 1: Uncorrelated jointly Gaussian vectors are independent

▪ Fact 2: Linear transformation of Gaussian random vectors are 
Gaussian

▪ Fact 3: Conditional Gaussian is Gaussian

▪ If general, checking whether a random variable is Gaussian or not 
requires computing its probability density function to see whether it is of 
the form of Gaussian. This can be quite involved. 
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▪ Fact 1: Independence between two Gaussians: 

▪ If 𝑋 ∈ 𝑅𝑛, 𝑌 ∈ 𝑅𝑚 are jointly Gaussians, then 𝑋 ⊥ 𝑌 if and only if

𝐸 𝑋𝑌𝑇 = 𝐸 𝑋 ⋅ 𝐸 𝑌 𝑇

𝐶𝑜𝑣 𝑋, 𝑌 = 0

▪ However, if 𝑋, 𝑌 are both Gaussians, but are not jointly Gaussian, 
then the above tests do not hold in general

▪ See supplemental note on joint Gaussian random vectors
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▪ Fact 2: Affine transformation of Gaussian is still Gaussian

Let 𝑿 ∼ 𝑵 𝝁, 𝚺 , 𝝁 ∈ 𝑹𝒏, 𝚺 ∈ 𝑹𝒏×𝒏, 𝑨 ∈ 𝑹𝒎×𝒏, 𝒃 ∈ 𝑹𝒎, then

𝒁 = 𝑨𝑿 + 𝒃 ∼ 𝑵 𝑨𝝁 + 𝒃, 𝑨𝚺𝑨𝑻

▪ This can be used to test whether a random variable is Gaussian or not

12

Example: 𝑋 ∼ 𝑁 𝜇, Σ , 𝑋 =
𝑋1
𝑋2
𝑋3

, Σ =
1 0 −1
0 2 1
−1 1 3

, 𝜇 =

𝜇1
𝜇2
𝜇3

,

▪ Is 𝑋2 Guassian?
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▪ Is 𝑍 = 𝑎2𝑋2 + 𝑎3𝑋3 a Gaussian?

▪ Is 𝑌 =
𝑋1
𝑋3

a Gaussian?

▪ Is 𝑋2 ⊥ 𝑋1? How about 𝑋1 and 𝑋3

13
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▪ Fact 3: Conditional Gaussian is Gaussian: Let  𝑋 ∈ 𝑅𝑛, 𝑌 ∈ 𝑅𝑚

be jointly Gaussian with mean 𝜇𝑋, 𝜇𝑌, covariance Σ𝑋, Σ𝑌, Σ𝑋𝑌, Σ𝑌𝑋, 
i.e, 

𝑿
𝒀

∼ 𝑵(
𝝁𝑿
𝝁𝒀

,
𝚺𝑿 𝚺𝑿𝒀
𝚺𝒀𝑿 𝚺𝒀

)

then the conditional distribution of 𝑿 given 𝒀 = 𝒚 is Gaussian

𝑿|𝒀 = 𝒚 ∼ 𝑵(𝝁𝑿|𝒀=𝒚, 𝚺𝑿|𝒀=𝒚),

where 

𝝁𝑿|𝒀=𝒚 = 𝝁𝑿 + 𝚺𝑿𝒀𝚺𝒀
−𝟏(𝒚 − 𝝁𝒀)

𝚺𝑿|𝒀=𝒚 = 𝚺𝑿 − 𝚺𝑿𝒀𝚺𝒀
−𝟏𝚺𝒀𝑿
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▪ Example: suppose 𝑍 =
𝑋
𝑌

, where 𝑋 ∈ 𝑅2, 𝑌 ∈ 𝑅, and  𝑍 ∼ 𝑁
1
2
3
,
2 1 0
1 4 1
0 1 8

15
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▪ Another example: Z =
𝑍1
𝑍2
𝑍3

, 𝑍 ∼ 𝑁
−1
5
4

,
1 −1 2
−1 4 0.5
2 0.5 9
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▪ MMSE example: 𝑋 ∼ 𝑁
4
4
,
4 1
1 2

, let 𝑌 =
1 0
1 4

𝑋 + 𝑉,

where V ∼ 𝑁
0
0
,
1 0
0 1

,  𝑉 is independent of 𝑋. Find the MMSE of 𝑋

given 𝑌 =
1
1

17
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▪ solution (continue)
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Outline

▪ Minimum Mean Squared Estimation (MMSE)

▪ Gaussian Random Vectors

▪ Kalman Filter Derivations

▪ Summary and Implementation
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Kalman Filter

▪ Consider a stochastic linear system described by
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

▪ 𝑥𝑘 ∈ 𝑅
𝑛--- system state at time 𝑘

▪ 𝑦𝑘 ∈ 𝑅
𝑚 --- measurement vector at time 𝑘

▪ 𝑌𝑘 ≜ 𝑦0
𝑇 𝑦1

𝑇 … 𝑦𝑘
𝑇 𝑇

--- collection of measurements up to time 𝑘

▪ 𝑢𝑘 ∈ R
𝑝--- system input at time k (deterministic input)

▪ 𝑤𝑘 ∈ 𝑅
𝑛--- process noise ∼ 𝑁 0, 𝑄𝑘

▪ 𝑣𝑘 ∈ 𝑅
𝑝--- measurement noise ∼ 𝑁 0, 𝑅𝑘

▪ Assume  𝑥0 ∼ 𝑁 𝜇0, Φ0 , 𝑥0 ⊥ 𝑤𝑘 , 𝑥0 ⊥ 𝑣𝑘 , 𝑤𝑘 ⊥ 𝑣𝑘 , ∀𝑘

▪ Implications of the above assumption:

▪ 𝑥𝑘 is Gaussian and 𝑦𝑘 is Gaussian for all 𝑘 ≥ 0 (VFY)
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▪ State estimation problem: Find the MMSE of 𝑥𝑘 given 𝑌𝑘

▪ Solution using Fundamental Theorem: 𝐸 𝑥𝑘 𝑌𝑘

▪ Kalman filter is just a recursive way to compute the 
conditional mean as new measurement comes in

▪ Define: ො𝑥𝑘|𝑘 = 𝐸 𝑥𝑘 𝑌𝑘 , ො𝑥𝑘|𝑘−1 = 𝐸 𝑥𝑘 𝑌𝑘−1

𝑃𝑘|𝑘 = 𝐸 𝑥𝑘 − ො𝑥𝑘|𝑘 𝑥𝑘 − ො𝑥𝑘|𝑘
𝑇
Yk

𝑃𝑘|𝑘−1 = 𝐸 𝑥𝑘 − ො𝑥𝑘|𝑘−1 𝑥𝑘 − ො𝑥𝑘|𝑘−1
𝑇
𝑌𝑘−1

▪ Simplified notation: ො𝑥𝑘 ≜ ො𝑥𝑘|𝑘,    𝑃𝑘 = 𝑃𝑘|𝑘
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▪ Before deriving Kalman filter, let’s work on an example

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝑤𝑘
𝑦𝑘 = 𝐶𝑘𝑥𝑘

where x0 ∼ 𝑁 0, , Σ𝑥 , 𝑤𝑘 ∼ 𝑁 0, Σ𝑤 , 𝐴 = Σ𝑤 =
1 0
0 1

, Σ𝑥 =
2 1
1 1

, 𝐶 = 1 2 . 

Compute ොx0 = 𝐸 𝑥0 𝑦0 = 1 and ොx1 = 𝐸 𝑥1 𝑦0 = 1, 𝑦1 = −1
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Example:
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Example continue..
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Example continue…
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▪ Goal of Kalman Filter: obtain recursive formula
ො𝑥𝑘
𝑃𝑘

ො𝑥𝑘+1
𝑃𝑘+1

▪ We can compute ො𝑥0, 𝑃0

▪ Given ො𝑥𝑘, 𝑃𝑘, how to compute ො𝑥𝑘+1, 𝑃𝑘+1: divide this recursion into 
two stages: prediction and measurement update

25

Derivation of Kalman Filter
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▪ Step 1: prediction (try to compute ො𝑥𝑘+1|𝑘 , 𝑃𝑘+1|𝑘 using ො𝑥𝑘 , 𝑃𝑘

▪ Summary of the prediction step: 
ො𝑥𝑘+1|𝑘 = 𝐴𝑘 ො𝑥𝑘 + 𝐵𝑘𝑢𝑘,

𝑃𝑘+1|𝑘 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘
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▪ Step 2: measurement update

▪ We want ො𝑥𝑘+1 = 𝐸 𝑥𝑘+1 𝑌𝑘+1 = 𝐸 𝑥𝑘+1 𝑌𝑘, 𝑦𝑘+1

▪ Up to now, we have ො𝑥𝑘+1|𝑘 and 𝑃𝑘+1|𝑘, i.e. the mean and covariance 

of conditional random variable 𝑥𝑘+1|𝑌𝑘

▪ How to find the mean and covariance of 𝑥𝑘+1| 𝑌𝑘, 𝑦𝑘+1

▪ Define 𝑍 = 𝑥𝑘+1 𝑌𝑘 , 𝑊 = 𝑦𝑘+1 𝑌𝑘 ⇒ ො𝑥𝑘+1 = 𝐸 𝑍 𝑊

27
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▪ Derivation (continue)
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▪ Complete derivation will be posted online
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Outline

▪ Minimum Mean Squared Estimation (MMSE)

▪ Gaussian Random Vectors

▪ Kalman Filter Derivations

▪ Summary and Implementation
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System model

1k k k k k kx A x B u w+ = + +

k k k k k ky C x D u v= + +

 0 1, , ,k kY y y y= K

( )| 1 1k k k kx E x Y− −=

( )with,   0k k k ke x x E e= − =

( )| 1 | 1 | 1with,   0k k k k k k ke x x E e− − −= − =

( ) ( )|T

kk

T

k kk kP E e e YE e e ==

( ) ( )| 1 | 1 |1 1 1| | 1

T T

k k kk k k k k kk kE e YE e eP e − −− −− −= =

Noise model Measurement history

Filtered estimate Filter error Filter error covariance

Predicted estimate Prediction error Prediction error covariance

Kalman Filter Notations

Some  facts:

( ) ( )|T

k k

T

k k kE e eE e e Y= ( ) ( )| 1 | 1 | 1| 11

T

k k k k

T

k k k k kE eE e e e Y− − − − −=

• Error covariance equals the conditional error covariance

• Unbiasedness: ( ) 0kE e = ( )| 1 0k kE e − =

• Mean squared error: ( ) ( ) ( ) ( )
2 2

| 1 | 1trace , tracek k k k k kE e P E e P− −= =

𝑤𝑘 ∼ 𝑁 0,𝑄𝑘

𝑣𝑘 ∼ 𝑁 0, 𝑅𝑘

ො𝑥𝑘 = ො𝑥𝑘|𝑘 = 𝐸 𝑥𝑘 𝑌𝑘



Kalman Filter Diagram

1

1

k

k

x

P

−

−

 
 
 

prediction | 1

| 1

k k

k k

x

P

−

−

 
 
 

| 1 1 1 1 1k k k k k kx A x B u− − − − −= +

| 1 1 1 1 1

T

k k k k k kP A P A Q− − − − −= +

2. Prediction error covariance

1. Predict state ahead

Prediction

( )
1

| 1 | 1

T T

k k k k k k k k kK P C C P C R
−

− −= +

( )| | -11 -kk k k k k k k k ky C xK Dx x u− −= +

( ) | 1k k k k kP I K C P −= −

1. Compute Kalman gain

2. Update estimate

3. Update error covariance

Measurement Update

1k k= +

Measurement 
update k

k

x

P

 
 
 

1|

1|

k k

k k

x

P

+

+

 
 
 

prediction

 0| 1 0| 1,x P− −

Initial 
condition  0 0,x P

Initial 
condition

Innovation

Either of the two initial conditions is enough to start the iteration
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Coding Example
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