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Suppose we want to estimate the value of a hidden random 
vector  based on observations of a related vector .  

We have to know the relationship between and . Suppose we 
take probabilistic viewpoint of their relations, namely, ( , 

An estimator is a function that maps each measurement 
to an estimate 

MMSE Theorem: The Minimum Mean-Squared Estimator for 
given , that minimizes is given by
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Estimator

Recall:
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Kalman filter is a recursive way to compute for linear 
Guassian system

For nonlinear systems, we can use Extended Kalman Filter 
(EKF)

System setup:

--- system state at time 
--- measurement vector at time 

--- collection of measurements up to time 
--- system input at time k (deterministic input)

, 
Assume  , 
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Recall:
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Preview of Extended Kalman Filter

By fundamental theorem of estimation, we know that the MMSE is 
given by 

So we again needs to compute 

With nonlinear dynamics, is a random variable that may not be 
Gaussian. 

Extended Kalman Filter tries to 
Approximate as a Gaussian

Approximate the nonlinear dynamics as linear dynamics
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Notations:  

Simplified notation: ,    

Goal: recursively compute:
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Extended Kalman Filter Derivation:

Step 1: Prediction (via linearization): 
Given , 

Need: 

Recall the linear Gaussian case:  , 
the prediction step:  

EKF: Linearize around the current state estimate and input 
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Summary of EKF Prediction Step:  
Linearization: 

Summary of EKF Prediction Step:  
Linearization: 
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Extended Kalman Filter Derivation:

Step 2: Measurement update through linearization:
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Recall the linear case:
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Application Example I for EKF

beacons with known positions 
:  robot location at time 

range measurement from beacon at time 

Typical measurement model: 

Goal: find the best estimate of given measurement 
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Derivation of the system model under constant speed assumption
Here, we want to use dynamics information in addition to the beacon measurement. we 
assume constant speed motion model:
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EKF derivation and implementation
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Application Example II : Joint State and Parameter Estimation

Consider a 2nd-order continuous time system:

System state: ,  system parameter 

System input-output 

Question: How to use data to jointly estimate and ?
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