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Recall:

= Suppose we want to estimate the value of a hidden random
vector X € R" based on observations of a related vector Y € R™,

= We have to know the relationship between X and Y. Suppose we
take probabilistic viewpoint of their relations, namely, (X, Y) ~

fxy (%, ¥)

= An estimator ¢(y) is a function that maps each measurement Y =
y to an estimate X

016%)),

L—[Es’rimo’ror]—x~

= MMSE Theorem: The Minimum Mean-Squared Estimator for X
given Y = y, that minimizes E (| |p(Y) — X| |2) is given by
Xumse = dumse(y) = EX|Y =)
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Recall:

= Kalman filter is a recursive way to compute E (x|Yy) for linear
Guassian system

= For nonlinear systems, we can use Extended Kalman Filter
(EKF)
= System setup: X1 = f O, ug) + Wy
Vi = h(xp, ui) + vy
X, € R"--- system state at time k

Yx € R™ --- measurement vector at time k

T . :
Y, & [yg yI oyl ] --- collection of measurements up to time k

uy € RP--- system input at time k (deterministic input)
Wi € R" ~ N(O, Qk)/ Vg € RP ~ N(O, Rk)
Assume x¢ ~ N(ug, Po), xo L wy,x9 L v, wy L v, Vk,j,and

Wi 1 Wj, Vg 1 Uj, Vk 7':]'
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Preview of Extended Kalman Filter

= By fundamental theorem of estimation, we know that the MMSE is
given by E (xy|Y)
= So we again needs to compute E (x|Yy)

= With nonlinear dynamics, xj is a random variable that may not be
Gaussian.

» Extended Kalman Filter tries to

= Approximate xj as a Gaussian

= Approximate the nonlinear dynamics as linear dynamics
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* Notations: Xy, = E(Qxx|Ye), Zijr—1 = EQex|Yi—1)
~ L NT
P = E ((xk — iy ) Ok — R ‘Yk)
Prjx-1=E ((xk — Rpepe—1) (k. — £k|k—1)T‘Yk—1)

Simplified notation: Xx £ Xy, Px = Py

= Goal: recursively compute:

{k\k} R Xk+1|k ‘ {£k+1
Py Priqk Py 41

Wei Zhang CLEAR Lab @ SUSTech



Extended Kalman Filter Derivation:

= Step 1: Prediction (via linearization):
» Given X, = E(xy|Yy), Py = E((xk — X)) (g — fk)lek)r
= Need: X1k = E(411Ye), Pey1x = E ((xk+1 — fk+1|k)(xk+1 — fk+1|k)T|Yk)
= Recall the linear Gaussian case: xj,.; = Axy + Buy + wy,
the prediction step: Xpyq1jx = ArXk + Brug,  Prgqje = AP AL + Q

= EKF: Linearize f(x,u) around the current state estimate X}, and input uy
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Summary of EKF Prediction Step:

Linearization: F, £ o

0% 23,up
Vo —_ Vo —_ T
Rer1ke = Ko w),  Prpaie = FiePiFy + Q
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Extended Kalman Filter Derivation:

= Step 2: Measurement update through linearization:

Recall the linear case: -1
Ki+1 = Pt CT (CPryq CT + Ri+1)

x;+1—=Cfcxk++DBuuk++ka - k41 = Xgpqpe Kk+1(yk+1 — CXpeyrpkc — Duk+1)
k k for Tk Piy1 = (I = K1 C) Py
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= Application Example I for EKF

b(z) — (pZ' qZ)
bV = (py,q1) o
®

(@)
b(g) = (p3r q3)

Q)
b(4) — (p4-l q4-) . ]
beacons with known positions bV = (bi‘), bé‘))

pi: robot location at time k
" yii: range measurement from beacon i at time k.
= Typical measurement model: yj ;= ||b(i) — pk|| + v;

Goal: find the best estimate of p;, given measurement {yq, y1, ..., Vi }
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= Derivation of the system model under constant speed assumption

Here, we want to use dynamics information in addition to the beacon measurement. we
assume constant speed motion model:
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= EKF derivation and implementation
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Application Example Il : Joint State and Parameter Estimation
= Consider a 2"9-order continuous time system:
Y(©) + 28w,y (1) + wry(t) = wp u(t)
= System state: x = [y, y]7, system parameter 8 = [, w,]?
= System input-output u, y

= Question: How to use (u,y) data to jointly estimate x and 87?
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