Fall 2021 ME424 Modern Control and Estimation

Lecture Note 8 Dynamic Programming & Linear Quadratic Regulator

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

- Outline
 - General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

- Closed-loop eigenvalues roughly indicate system response, but do not represent all factors:
 - Same eigenvalues may also have different transient responses
 - We often want control input to be small, which cannot be formally addressed with eigenvalue assignment approach

- Metric-based controller design
 - Represent design objectives in terms a **cost function**
 - Cost functions typically penalize
 - state deviation from 0
 - Large control effort
 - These are conflicting goals: larger control can often drive state to zero faster

General Discrete-Time Optimal Control Problem

- Dynamics: $x_{k+1} = f(x_k, u_k)$
- State constraints: $x_k \in X$
- Control constraints: $u_k \in U(x_k)$
- Controller (Control law): $\mu_k: X \to U$
- Control Horizon: [0, *N*]
- Control policy vs. control inputs:
 - Control policy: a sequence of control laws
 - Control inputs: a sequence of control actions

General Discrete-Time Optimal Control Problem

• Closed-loop Dynamics under policy $\pi = {\mu_0, \mu_1, ...}$

- Quantify performance of controller through cost function
 - Running (stage) cost: $l(x_k, u_k)$

• Terminal cost: $g(x_N)$

• *N*-horizon cost: $J_N(x_0, u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)$

• Infinite horizon cost: $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} l(x_k, u_k)$

- Finite Horizon Optimal Control (N < ∞)
 - For given initial state $z \in \mathbb{R}^n$, find the control input u_0, u_1, \dots, u_{N-1} to
 - Minimize: $J_N(z, u)$
 - subject to: $u_k \in U(x_k)$, control constraint $x_{k+1} = f(x_k, u_k), x_0 = z$ system dynamics constraints

Here: U(x_k) is the set of state-dependent control action
 e.g. U(x) = {u ≤ 2x}

• Optimizers $\{u_0^*, \dots, u_{N-1}^*\}$ depends on the initial state *z*

Example I: Cessna Citation Aircraft

Linearized continuous-time model: (at altitude of 5000m and a speed of 128.2 m/sec)

$$\dot{x} = \begin{bmatrix} -1.2822 & 0 & 0.98 & 0 \\ 0 & 0 & 1 & 0 \\ -5.4293 & 0 & -1.8366 & 0 \\ -128.2 & 128.2 & 0 \end{bmatrix} x + \begin{bmatrix} -0.3 \\ 0 \\ -17 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x$$

- Input: elevator angle
- States: x₁: angle of attack, x₂: pitch angle, x₃: pitch rate, x₄: altitude
- Outputs: pitch angle and altitude
- Constraints: elevator angle ± 0.262 rad $(\pm 15^{\circ})$, elevator rate ± 0.349 rad/s $(\pm 20^{\circ}/s)$, pitch angle ± 0.650 rad $(\pm 37^{\circ})$

• Open-loop response is unstable (open-loop poles: 0, 0, $-1.5594 \pm 2.29i$)

Example I: Cessna Citation Aircraft

- Obtain DT-Model dt = 0.25s
- Choose cost func:

• Choose constraint set:

• Overall optimal control problem:

Example II: Shortest Path Problem

- $X = \{a_1, \dots, a_8\}$; U(x): possible next site to visit
- $x_{k+1} = f(x_k, u_k)$
- Running cost: l(z, u) =

• Terminal cost: g(z) =

• Optimal control problem:

Example III: Motion Planning for Autonomous Vehicle

- Consider unicycle kinematic model: state $x = (p_x, p_y, \theta, v)$, control $u = (\omega, \alpha)$
- Dynamics: $\dot{x} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ \omega \\ \alpha \end{bmatrix}$

• Control Goal: Track a give reference $(p_k^d, v_k^d, \theta_k^d)$

Outline

General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

Dynamic Programming (DP):

- Most important tool for solving deterministic and stochastic optimal control problems
- Divide & conquer: The *N*-horizon optimal solution depends on the *N* 1 horizon optimal solution, which in turns depend on the *N* 2 horizon optimal solution ...
- We solve 0-horizon first, then 1-horizon, ..., eventual solve the *N*-horizon optimal control problem.
- The divide & conquer approach is grounded by a fundamental principle: **Bellman's principle of optimality**

Any segment along an optimal trajectory is also optimal among all the trajectories joining the two end points of the segment

Dynamic Programming (DP)

• For arbitrary integer $j \ge 0$, the *j*-horizon optimal control problem:

$$V_{j}(z) = \min_{u_{0},...,u_{j-1}} \left\{ g(x_{j}) + \sum_{k=0}^{j-1} l(x_{k}, u_{k}) \right\},$$

subject to
 $x_{k+1} = f(x_{k}, u_{k}), \quad x_{0} = z$
 $u_{k} \in U(x_{k}), \quad k = 0, ..., j-1$

- *V_j**(*z*): *j*-horizon value function, i.e. minimum cost if sys starts from state *z* when there are *j* steps left to reach final time
- Let u₀^{*}, u₁^{*}, ..., u_{j-1}^{*} is the optimal solution to the above prob.
 If system is at state *z* when there are *j* steps left, the first step of the optimal control is u₀^{*}, the second step is u₁^{*},

Dynamic Programming: Value Iteration

- Value Iteration: Compute $V_N(z)$ iteratively from $V_0(z)$
- 0-horizon problem (degenerate case):

1-horizon problem

• 2-horizon problem:

- What is the optimal control for *j* + 1 horizon?
 - Suppose available controls at time 0 are $U(z) = \{u^{(1)}, u^{(2)}\}$
 - Need to compare: $l(z, u^{(1)}) + V_j(f(z, u^{(1)}))$ and $l(z, u^{(2)}) + V_j(f(z, u^{(2)}))$
 - The optimal control: $\mu_{j+1}^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_j(f(z, u))\}$
 - The minimum cost: $V_{j+1}(z) = \min_{u \in U(z)} \{ l(z, u) + V_j(f(z, u)) \}$
- $\mu_{j+1}^*(z)$: has the following two meanings
 - the first optimal control action for a j + 1 horizon problem with initial state z
 - the optimal control action when the system is at state *z* and there are j+1 steps to go

Value Iteration Algorithm

- System dynamics: $x_{k+1} = f(x_k, u_k)$ with $u_k \in U(x_k)$
- Determine *u* by solving optimization problem: Minimize: $J_N(z, u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)$ subject to: control constraint $u_k \in U(x_k)$,

system dynamics $x_{k+1} = f(x_k, u_k), x_0 = z$

- Solve problem through value iteration: (namely, iteratively compute the value function for 0-horizon, 1-horizon, ..., N-horizon problems)
 - Step 0: (0-horizon): $V_0(z) = g(z)$
 - Step *j*: given V_j(z) and the optimal control laws μ^{*}_j(z), μ^{*}_{j-1}, (z) ..., μ^{*}₀(z) for the remaining *j* steps, compute:
 - $V_{j+1}(z) = \min_{u \in U(z)} \{ l(z, u) + V_j(f(z, u)) \}$
 - $\mu_{j+1}^*(z) = argmin_{u \in U(z)} \{ l(z, u) + V_j(f(z, u)) \}$
 - $j \leftarrow j + 1$, until j = N

- Value iteration algorithm output:
 - Value functions: $V_0(z), ..., V_N(z)$
 - Optimal control laws: $\mu_j^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_{j-1}f(z, u)\}, j = 1, ..., N$
 - The optimal control action if sys is at *z* and there are *j* steps to go
- How to use these control laws?
 - Optimal system trajectory
 - Time 0: $x_0 = \hat{x} \rightarrow \text{control action: } u_0^* = \mu_N^*(\hat{x})$
 - Time 1: $x_1^* = f(\hat{x}, u_0^*) \rightarrow \text{control action: } u_1^* = \mu_{N-1}^*(x_1^*)$
 - Time 2: $x_2^* = f(x_1^*, u_1^*) \rightarrow \text{control action: } u_2^* = \mu_{N-2}^*(x_2^*)$
 - •
 - Time N 1: $x_{N-1}^* = f(x_{N-2}^*, u_{N-2}^*) \rightarrow \text{control action: } u_{N-1}^* = \mu_1(x_{N-1}^*)$
 - Time $N: x_N^* = f(x_{N-1}^*, u_{N-1}^*)$
- In general: at time *k*: **optimal control** $u_k^* = \mu_{N-k}^*(x_k^*)$

• Example: Find shortest path from a_1 to a_4 • $V_0(z) =$

• $V_1(z) =$

- Outline
 - General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

- Linear Quadratic Regulator (LQR):
 - *N*-horizon LQR: Find control sequence $u_0, u_1, ..., u_{N-1}$ to minimize $J_N(z, u)$, subject to **linear dynamics constraints**:

 $x_{k+1} = Ax_k + Bu_k, \quad x_0 = z$ where : $J_N(x_0, u) = x_N^T Q_f x_N + \sum_{k=0}^{N-1} [x_k^T Q x_k + u_k^T R u_k]$

• Infinite-horizon LQR: Find control sequence $u_0, u_1, ...,$ to minimize $J_{\infty}(x_0, u)$ subject to linear dynamics constraints: $x_{k+1} = Ax_k + Bu_k$ where $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} [x_k^T Q x_k^T + u_k^T R u_k^T]$

• $z^T P z$: quadratic cost term, penalizing deviation from 0, e.g.:

• if
$$P = I$$
, then $z^T P z = ||z||^2$

• if $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $z^T P z = z_1^2 + 2z_2^2$, penalizes z_2 more than z_1

- Solution of LQR using Dynamic Programming (DP)
 - $V_0(z) = z^T Q_f z$
 - Suppose at *j*-horizon value function is: $V_j(z) = z^T P_j z$ Compute (j + 1)-horizon value function using DP

$$V_{j+1}(z) = \min_{u \in R^m} \{ l(z, u) + V_j(f(z, u)) \}$$

= $\min_{u \in R^m} \{ z^T Q z + u^T R u + (A z + B u)^T P_j (A z + B u) \}$
= $\min_{u \in R^m} \{ u^T (R + B^T P_j B) u + 2 z^T A^T P_j B u + z^T (Q + A^T P_j A) z \}$
 $\triangleq \min_{u \in R^m} h(u)$

•
$$\frac{\partial h}{\partial u}(u) = 2u^T \left(R + B^T P_j B \right) + 2z^T A^T P_j B = 0$$

$$\rightarrow$$

Optimizer:
$$\mu_{j+1}^*(z) = -(R + B^T P_j B)^{-1} B^T P_j A z \triangleq -K_{j+1} z$$

where
$$K_{j+1} = (R + B^T P_j B)^{-1} B^T P_j A_{j+1}$$

Derivation (cont.)

•
$$V_{j+1}(z) = \min_{u \in R^m} h(u) = h(u^*)$$

 $= (-K_j z)^T (R + B^T P_j B) (-K_j z) + 2z^T A^T P_j B (-K_j z) + z^T (Q + A^T P_j A) z$
 $= z^T (Q + A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A) z$
 $\triangleq z^T P_{j+1} z$

where $P_{j+1} \triangleq Q + A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A$

If at time k, the state is at x_k, then the optimal control applied at time k is

$$u_k^* = \mu_{N-k}^*(x_k) = K_{N-k}x_k$$

Summary of LQR

• Value function is given by: $V_j(z) = z^T P_j z$, where P_j is given by the so-called Riccati recursion:

$$P_{j+1} = Q + A^{T} P_{j} A - A^{T} P_{j} B (R + B^{T} P_{j} B)^{-1} B^{T} P_{j} A$$

- To compute the LQR controller:
 - Start from initial matrix: $P_0 = Q_f$
 - Riccati recursion: $P_j \leftarrow P_{j-1}$
 - Compute optimal feedback gain: $K_j = (R + B^T P_{j-1}B)^{-1} B^T P_{j-1}A$
- Apply LQR controller:
 - Start from an IC: *x*₀
 - For k = 0, ..., N 1
 - Compute: $u_k^* = -K_{N-k}x_k^*$,

•
$$x_{k+1}^* = Ax_k^* + Bu_k^*$$

- Infinite horizon case:
 - It can be proved that if (A, B) is controllable and (A, G) is observable, where $Q = G^T G$, then as $N \to \infty$,

•
$$P_j \rightarrow P^*$$
, and $K_j \rightarrow K^*$, with $|\lambda(A - BK^*)| < 1$

• *P*^{*} and *K*^{*} satisfy the algebraic equations:

$$P^* = A^T [P^* - P^*B(R + B^T P^*B)^{-1}B^T P^*]A + Q$$
$$K^* = (R + B^T P^*B)^{-1}B^T P^*A$$

Coding Example