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* Closed-loop eigenvalues roughly indicate system response, but
do not represent all factors:

= Same eigenvalues may also have different transient responses

= We often want control input to be small, which cannot be formally
addressed with eigenvalue assignment approach

= Metric-based controller design
= Represent design objectives in terms a cost function
= Cost functions typically penalize
= state deviation from 0
= Large control effort

= These are conflicting goals: larger control can often drive state to
zero faster
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General Discrete-Time Optimal Control Problem
= Dynamics: xpq1 = f(xg, Ug)

= State constraints: x;, € X

= Control constraints: u, € U(xy)

= Controller (Control law): pp: X - U

= Control Horizon: [0, N]

= Control policy vs. control inputs:

= Control policy: a sequence of control laws

= Control inputs: a sequence of control actions
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General Discrete-Time Optimal Control Problem

= Closed-loop Dynamics under policy m = {ug, 4y, ... }

= Quantify performance of controller through cost function
= Running (stage) cost: L (xy, uy)

= Terminal cost: g(xy)

= N-horizon cost: Jy(xg, 1) = g(xy) + Xrzo L(xp, ug)

* Infinite horizon cost: Jo, (X, u) = Y=o L(xk, Ug)
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= Finite Horizon Optimal Control (N < )

= For given initial state z € R", find the control input ug, uq,, ..., uy_4 to
» Minimize: Jy(z,u)
= subjectto: uy € U(xy), control constraint

Xps1 = f(xp,uy), xog = 2 system dynamics constraints

= Here: U(xy) is the set of state-dependent control action
e.g. U(x) = {u < 2x}

= Optimizers {uy, ..., uy_1} depends on the initial state z
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Example I: Cessna Citation Aircraft

Linearized continuous-time model: (at altitude of 5000m and a speed of 128.2 m/sec)
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® |nput: elevator angle

® States: x1: angle of attack, x2: pitch angle,
x3: pitch rate, x4: altitude

Angle of attack

® Qutputs: pitch angle and altitude

horizon - pitch angle =

® (Constraints: elevator angle £0.262rad
(£15%), elevator rate £0.349 rad/s (£20°/s),
pitch angle £0.650 rad (£37°)

® Open-loop response is unstable (open-loop poles: 0, 0, —1.5594 + 2.297)
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Example I: Cessna Citation Aircraft

= Obtain DT-Model dt = 0.25s
= Choose cost func:

= Choose constraint set:

= Overall optimal control problem:
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Example II: Shortest Path Problem
= X ={aq, ...,ag}; U(x): possible next site to visit

" Xpt+1 = f (X, ug)

= Running cost: I(z,u) =

» Terminal cost: g(z) =

Optimal control problem:
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Example III: Motion Planning for Autonomous Vehicle

= Consider unicycle kinematic model: state x = (px, Dy, 0, v), control u = (w, a)

[vcos(0)] L -
= Dynamics: x = vSlZ(Q) E:.]i: (e Baesp

04 ] - """ “’:—%' » ':'

= Control Goal: Track a give reference (p,‘{l, vd, 67 )
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Dynamic Programming (DP):

= Most important tool for solving deterministic and stochastic optimal
control problems

= Divide & conquer: The N-horizon optimal solution depends on the
N — 1 horizon optimal solution, which in turns depend on the N — 2
horizon optimal solution ...

= We solve 0-horizon first, then 1-horizon, ..., eventual solve the N-
horizon optimal control problem.

= The divide & conquer approach is grounded by a fundamental
principle: Bellman's principle of optimality

Any segment along an optimal trajectory is also optimal among all the
trajectories joining the two end points of the segment
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Dynamic Programming (DP)

= For arbitrary integer j > 0, the j-horizon optimal control problem:

Vi(2) = miny,,.u;_{g(x) + T2y 10w )},
subject to Xpe1= f (X, U), X9 =2
[25% (S U(xk), k = 0,...,j_ 1

= Vi"(2): j-horizon value function, i.e. minimum cost if sys starts
from state z when there are j steps left to reach final time

* Let uy, uj, ..., u]’-"_1 is the optimal solution to the above prob.

If system is at state z when there are j steps left, the first step of
the optimal control is ug, the second step is uj, ....
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Dynamic Programming: Value Iteration
= Value Iteration: Compute Vy(z) iteratively from Vy(z)

= (-horizon problem (degenerate case):

= 1-horizon problem

= 2-horizon problem:
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= Now suppose we are given V;(z), need to derive V;;(2)

O —
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Optimal traj. over [1,j + 1] if x; = z(M

= What is the optimal control for j + 1 horizon?

= Suppose available controls at time 0 are U(z) = {u®,u®}

= Need to compare: l(z,u(l)) +V; (f(z,u(l))) and I(z,u®) + V; (f(z,u(z)))

= The optimal control: uj,,(2) = argminueu(z){l(z, w) +Vi(f(z, u)}

= The minimum cost: V4 (z) = rEnUi?){l(z, w) +Vi(f(z, u)}
u Z

. u}-kﬂ(z): has the following two meanings

= the first optimal control action for a j + 1 horizon problem with initial state z

= the optimal control action when the system is at state z and there are j+1 steps to go
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Value Iteration Algorithm

= System dynamics: xp4q = f(xg, ux) with u, € U(xy)

= Determine u by solving optimization problem:

Minimize: Jy(z,u) = g(xy) + X823 10xp, ug)
subject to:  control constraint u;, € U(xy),

system dynamics xj.1 = f(xg, Ug), Xo = Z

= Solve problem throu%h value iteration: (namely, iteratively compute the value

function for 0-horizon,

horizon, ..., N-horizon problems)

= Step 0: (O-horizon): Vy(2)

" j—j+1,untilj =N

=9(2)
= Step j: given Vj(z) and the optimal control laws u;(2), ij_4, (2) ...
remaining j steps, compute:

= V(@ = min {I(z,w) + V;(f(z,w))
ueu(z)

" U (2) = argmingey {1z W) + Vi (f (2, 0)

, Up(2) for the

/

Wei Zhang
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= Value iteration algorithm output:
» Value functions: Vy(2), ..., Vy(2)
= Optimal control laws: u;(z) = argmingeypil(z,u) + Vioif(zw}, j=1,..,N
= The optimal control action if sys is at z and there are j steps to go
= How to use these control laws?
= Optimal system trajectory
» Time 0: x, = X > control action: uy = uy (%)
» Time 1: x; = f(X,uy) = control action: uj = uy_q(x7)

» Time 2: x; = f(x],uj) = control action: u; = puy_,(x3)

Time N — 1: xy_; = f(xy_y, Uy_y) =2 control action: uy_; = p;(xy_1)

Time N: xy = f(xy_1, UN—1)
= In general: at time k: optimal control u; = puy_;(x3)
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= Example: Find shortest path from a; to a,
" Vo(2) =

= V1(2) = a;
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= Linear Quadratic Regulator (LQR):

= N-horizon LQR: Find control sequence ug, u4, ..., uy—1 to minimize
Jn(z,u), subject to linear dynamics constraints:
Xi+1 = Ax, + Buy, Xo = Z

where : Jy (xo,u) = xyQrxy + Zg;&[ngxk + ui Ruy, ]

= Infinite-horizon LQR: Find control sequence ug, u4, ..., to minimize
Joo (xg, u) subject to linear dynamics constraints: x4+ = Ax, + Buy

where Jo, (xo, u) = Ypeo[xF QxF + ulRul]

= zT'Pz: quadratic cost term, penalizing deviation from 0, e.g.:
» ifP =1, thenzPz = ||z||2

«ifp= |1 O ,then zT Pz = z# + 2z%, penalizes z, more than z,
0 2 1 2, P
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= Solution of LQR using Dynamic Programming (DP)
* Vo(2) =2"Qyz

* Suppose at j-horizon value function is: V;(z) = z"P;z

Compute (j + 1)-horizon value function using DP

Visr(2) = lfg}g}n{l(zy u) + V](f(Z; u))}
= min {z"Qz + u"Ru + (Az + Bu)" P;(Az + Bu)}

UERM

= min{u”(R + BTP,B Ju + 2zTATP;Bu + z"(Q + ATP;A)z}

= 2 (u) =2u" (R+BTPB) +22"ATF;B = 0

Optimizer: u},,(z) = —(R + BTP;B )—1BTP]-AZ 2 —Kj12

[,
where Ki,, = (R+BTP,B)  BTPA
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* Derivation (cont.)
* Vit1(2) = min h(w) = h(u’)
= (—=K;z)' (R + BTPB )(—K;z) + 22T ATP;B(—K;z) + z7(Q + ATP;A)z
=2"(Q+ATPA— ATPB(R + BTP,B) 'BTPA)z
2 2'Piyqz

where P, = Q + ATP,A— ATP,B(R + BTP;B)” ' BTP,A

= If at time k, the state is at x, then the optimal control applied at time
k is
U = Un—(Xx) = Kny—gx
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= Summary of LOR

* Value function is given by: V;(z) = z" Pz, where P, is given by the so-
called Riccati recursion:

[ Pis1=Q+ATP.A—ATP.B(R + BTP,B) 'BTP.A J

= To compute the LQR controller:
= Start from initial matrix: Py = Q¢

= Riccati recursion: P; < P;_;

= Compute optimal feedback gain: K; = (R + BTPj_lB)_lBTPj_lA

= Apply LOR controller:
= Start from an IC: x
= Fork=0,..,N—1
= Compute: u, = —Ky_rXp,

* — * *
" Xp41 = Axp + Buy
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= Infinite horizon case:

= It can be proved that if (4, B) is controllable and (4, G) is observable,
where Q = G'G, thenas N - o,

= P - P*, and K; —» K*, with [1(4A — BK*)| < 1
= P*and K* satisfy the algebraic equations:
pP* = AT [P*—P*B(R + BTP*B)"'BTP*]A + Q

K*=(R + BTP*B)"1BTP*A
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Wei Zhang

Coding Example
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