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▪ Outline

▪ General Discrete-Time Optimal Control Problem

▪ Short Introduction to Dynamic Programming

▪ Linear Quadratic Regulator
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▪ Closed-loop eigenvalues roughly indicate system response, but 
do not represent all factors:

▪ Same eigenvalues may also have different transient responses

▪ We often want control input to be small, which cannot be formally 
addressed with eigenvalue assignment approach

▪ Metric-based controller design

▪ Represent design objectives in terms a cost function 

▪ Cost functions typically penalize

▪ state deviation from 0 

▪ Large control effort

▪ These are conflicting goals: larger control can often drive state to 
zero faster
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General Discrete-Time Optimal Control Problem

▪ Dynamics:  𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘

▪ State constraints: 𝑥𝑘 ∈ 𝑋

▪ Control constraints: 𝑢𝑘 ∈ 𝑈(𝑥𝑘)

▪ Controller (Control law):  𝜇𝑘: 𝑋 → 𝑈

▪ Control Horizon: [0, 𝑁]

▪ Control policy vs. control inputs: 

▪ Control policy: a sequence of control laws

▪ Control inputs: a sequence of control actions
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General Discrete-Time Optimal Control Problem

▪ Closed-loop Dynamics under policy 𝜋 = {𝜇0, 𝜇1, … }

▪ Quantify performance of controller through cost function

▪ Running (stage) cost: 𝑙 𝑥𝑘 , 𝑢𝑘

▪ Terminal cost: 𝑔 𝑥𝑁

▪ 𝑁-horizon cost:  𝐽𝑁 𝑥0, 𝑢 = 𝑔 𝑥𝑁 + σ𝑘=0
𝑁−1 𝑙 𝑥𝑘 , 𝑢𝑘

▪ Infinite horizon cost: 𝐽∞ 𝑥0, 𝑢 = σ𝑘=0
∞ 𝑙 𝑥𝑘 , 𝑢𝑘
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▪ Finite Horizon Optimal Control (𝑁 < ∞)

▪ For given initial state 𝑧 ∈ R𝑛, find the control input 𝑢0, 𝑢1, , … , 𝑢𝑁−1 to 

▪ Minimize:    𝐽𝑁 𝑧, 𝑢

▪ subject to:    𝑢𝑘 ∈ 𝑈 𝑥𝑘 ,                                control constraint

𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑥0 = 𝑧 system dynamics constraints

▪ Here: 𝑈 𝑥𝑘 is the set of state-dependent control action

e.g. 𝑈 𝑥 = {𝑢 ≤ 2𝑥}

▪ Optimizers 𝑢0
∗ , … , 𝑢𝑁−1

∗ depends on the initial state 𝑧
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Example I: Cessna Citation Aircraft
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Example I: Cessna Citation Aircraft

▪ Obtain DT-Model 𝑑𝑡 = 0.25𝑠

▪ Choose cost func:

▪ Choose constraint set:

▪ Overall optimal control problem: 
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Example II: Shortest Path Problem

▪ 𝑋 = {𝑎1, … , 𝑎8} ;  𝑈 𝑥 : possible next site to visit

▪ 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)

▪ Running cost: 𝑙 𝑧, 𝑢 =

▪ Terminal cost: 𝑔 𝑧 =

▪ Optimal control problem: 
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Example III: Motion Planning for Autonomous Vehicle

▪ Consider unicycle kinematic model: state 𝑥 = 𝑝𝑥, 𝑝𝑦 , 𝜃, 𝑣 , control 𝑢 = (𝜔, 𝛼)

▪ Dynamics: ሶ𝑥 =

𝑣𝑐𝑜𝑠(𝜃)

𝑣𝑠𝑖𝑛 𝜃
𝜔
𝛼

▪ Control Goal: Track a give reference 𝑝𝑘
𝑑, 𝑣𝑘

𝑑, 𝜃𝑘
𝑑
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Outline

▪ General Discrete-Time Optimal Control Problem

▪ Short Introduction to Dynamic Programming

▪ Linear Quadratic Regulator
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Dynamic Programming (DP): 

▪ Most important tool for solving deterministic and stochastic optimal 
control problems

▪ Divide & conquer:  The 𝑁-horizon optimal solution depends on the 
𝑁 − 1 horizon optimal solution, which in turns depend on the 𝑁 − 2
horizon optimal solution …

▪ We solve 0-horizon first, then 1-horizon, …, eventual solve the 𝑁-
horizon optimal control problem. 

▪ The divide & conquer approach is grounded by a fundamental 
principle:  Bellman's principle of optimality

Any segment along an optimal trajectory is also optimal among all the 
trajectories joining the two end points of the segment
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Dynamic Programming (DP)

▪ For arbitrary integer 𝑗 ≥ 0, the 𝑗-horizon optimal control problem:

▪ 𝑉𝑗
∗(𝑧):  𝒋-horizon value function, i.e. minimum cost if sys starts 

from state 𝑧 when there are 𝑗 steps left to reach final time

▪ Let 𝑢0
∗ , 𝑢1

∗, … , 𝑢𝑗−1
∗ is the optimal solution to the above prob. 

If system is at state  𝑧 when there are 𝑗 steps left, the first step of 
the optimal control is 𝑢0

∗ , the second step is 𝑢1
∗, …. 
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𝑉𝑗 𝑧 = min𝑢0,…,𝑢𝑗−1 𝑔 𝑥𝑗 + σ𝑘=0
𝑗−1

𝑙 𝑥𝑘 , 𝑢𝑘 , 

subject to      𝑥𝑘+1= 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑥0 = 𝑧
𝑢𝑘 ∈ 𝑈 𝑥𝑘 , 𝑘 = 0, … , 𝑗 − 1
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Dynamic Programming: Value Iteration

▪ Value Iteration: Compute 𝑉𝑁 𝑧 iteratively from 𝑉0(𝑧)

▪ 0-horizon problem (degenerate case):

▪ 1-horizon problem

▪ 2-horizon problem:
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▪ Now suppose we are given 𝑉𝑗(𝑧), need to derive 𝑉𝑗+1(𝑧)

▪ What is the optimal control for 𝑗 + 1 horizon? 

▪ Suppose available controls at time 0 are 𝑈 𝑧 = 𝑢(1), 𝑢(2)

▪ Need to compare: 𝑙 𝑧, 𝑢 1 + 𝑉𝑗 𝑓 𝑧, 𝑢 1 and 𝑙 𝑧, 𝑢(2) + 𝑉𝑗 𝑓 𝑧, 𝑢(2)

▪ The optimal control: 𝜇𝑗+1
∗ (𝑧) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈(𝑧) 𝑙 𝑧, 𝑢 + 𝑉𝑗(𝑓 𝑧, 𝑢

▪ The minimum cost: 𝑉𝑗+1 𝑧 = min
𝑢∈𝑈(𝑧)

𝑙 𝑧, 𝑢 + 𝑉𝑗(𝑓 𝑧, 𝑢

▪ 𝝁𝒋+𝟏
∗ (𝒛): has the following two meanings

▪ the first optimal control action for a 𝑗 + 1 horizon problem with initial state 𝑧

▪ the optimal control action when the system is at state 𝑧 and there are j+1 steps to go

15

time 𝑘

State value 𝑥𝑘

𝑗 + 1𝟏0

𝑧(1)

𝑧(2)

Optimal traj. over [1, 𝑗 + 1] if 𝑥1 = 𝑧(1)

Optimal traj. over [1, 𝑗 + 1]

if 𝑥1 = 𝑧(2)

𝑧
𝑢(1)

𝑢(2)
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Value Iteration Algorithm

▪ System dynamics: 𝑥𝑘+1 = 𝑓 𝑥𝑘, 𝑢𝑘 with 𝑢𝑘 ∈ 𝑈 𝑥𝑘

▪ Determine 𝑢 by solving optimization problem:

Minimize:     𝐽𝑁 𝑧, 𝑢 = 𝑔 𝑥𝑁 + σ𝑘=0
𝑁−1 𝑙 𝑥𝑘 , 𝑢𝑘

subject to: control constraint  𝑢𝑘 ∈ 𝑈 𝑥𝑘 , 

system dynamics 𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 , 𝑥0 = 𝑧

▪ Solve problem through value iteration: (namely, iteratively compute the value 
function for 0-horizon, 1-horizon, …, N-horizon problems)

▪ Step 0: (0-horizon): 𝑉0(𝑧) = 𝑔 𝑧

▪ Step 𝒋: given 𝑉𝑗(𝑧) and the  optimal control laws 𝜇𝑗
∗(𝑧), 𝜇𝑗−1

∗ , (𝑧) … , 𝜇0
∗ 𝑧 for the 

remaining 𝑗 steps, compute:

▪ 𝑉𝑗+1 𝑧 = min
𝑢∈𝑈(𝑧)

𝑙 𝑧, 𝑢 + 𝑉𝑗(𝑓 𝑧, 𝑢

▪ 𝜇𝑗+1
∗ (𝑧) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈(𝑧) 𝑙 𝑧, 𝑢 + 𝑉𝑗(𝑓 𝑧, 𝑢

▪ 𝑗 ← 𝑗 + 1 , until 𝑗 = 𝑁
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▪ Value iteration algorithm output:

▪ Value functions: 𝑉0 𝑧 , … , 𝑉𝑁(𝑧)

▪ Optimal control laws: 𝜇𝑗
∗ 𝑧 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝑈 𝑧 𝑙 𝑧, 𝑢 + 𝑉𝑗−1𝑓(𝑧, 𝑢) , 𝑗 = 1,… , 𝑁

▪ The optimal control action if sys is at 𝑧 and there are 𝑗 steps to go

▪ How to use these control laws?

▪ Optimal system trajectory

▪ Time 0: 𝑥0 = ො𝑥 → control action: 𝑢0
∗ = 𝜇𝑁

∗ ො𝑥

▪ Time 1: 𝑥1
∗ = 𝑓 ො𝑥, 𝑢0

∗
→ control action: 𝑢1

∗ = 𝜇𝑁−1
∗ 𝑥1

∗

▪ Time 2: 𝑥2
∗ = 𝑓 𝑥1

∗, 𝑢1
∗
→ control action: 𝑢2

∗ = 𝜇𝑁−2
∗ 𝑥2

∗

▪ ⋮

▪ Time 𝑁 − 1: 𝑥𝑁−1
∗ = 𝑓 𝑥𝑁−2

∗ , 𝑢𝑁−2
∗

→ control action: 𝑢𝑁−1
∗ = 𝜇1 𝑥𝑁−1

∗

▪ Time 𝑁: 𝑥𝑁
∗ = 𝑓(𝑥𝑁−1

∗ , 𝑢𝑁−1
∗ )

▪ In general: at time 𝑘: optimal control 𝒖𝒌
∗ = 𝝁𝑵−𝒌

∗ 𝒙𝒌
∗
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▪ Example: Find shortest path from 𝑎1 to 𝑎4
▪ 𝑉0(𝑧) =

▪ 𝑉1 𝑧 =

18
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▪ Example: Find shortest path from 𝑎1 to 𝑎4
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▪ Outline

▪ General Discrete-Time Optimal Control Problem

▪ Short Introduction to Dynamic Programming

▪ Linear Quadratic Regulator
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▪ Linear Quadratic Regulator (LQR):

▪ 𝑁-horizon LQR: Find control sequence 𝑢0, 𝑢1, … , 𝑢𝑁−1 to minimize 
𝐽𝑁 𝑧, 𝑢 , subject to linear dynamics constraints:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , 𝑥0 = 𝑧

where : 𝐽𝑁 𝑥0, 𝑢 = 𝑥𝑁
𝑇𝑄𝑓𝑥𝑁 + σ𝑘=0

𝑁−1 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘

▪ Infinite-horizon LQR: Find control sequence 𝑢0, 𝑢1, … , to minimize 
𝐽∞ 𝑥0, 𝑢 subject to linear dynamics constraints: 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

where 𝐽∞ 𝑥0, 𝑢 = σ𝑘=0
∞ 𝑥𝑘

𝑇𝑄𝑥𝑘
𝑇 + 𝑢𝑘

𝑇𝑅𝑢𝑘
𝑇

▪ 𝑧𝑇𝑃𝑧: quadratic cost term, penalizing deviation from 0, e.g.:

▪ if 𝑃 = 𝐼, then 𝑧𝑇𝑃𝑧 = 𝑧
2

▪ if 𝑃 =
1 0
0 2

, then 𝑧𝑇𝑃𝑧 = 𝑧1
2 + 2𝑧2

2, penalizes 𝑧2 more than 𝑧1
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▪ Solution of LQR using Dynamic Programming (DP)

▪ 𝑉0 𝑧 = 𝑧𝑇𝑄𝑓𝑧

▪ Suppose at 𝑗-horizon value function is: 𝑉𝑗 𝑧 = 𝑧𝑇𝑃𝑗𝑧

Compute 𝑗 + 1 -horizon value function using DP

𝑉𝑗+1 𝑧 = min
𝑢∈𝑅𝑚

𝑙 𝑧, 𝑢 + 𝑉𝑗 𝑓 𝑧, 𝑢

= min
𝑢∈𝑅𝑚

{𝑧𝑇𝑄𝑧 + 𝑢𝑇𝑅𝑢 + 𝐴𝑧 + 𝐵𝑢 𝑇𝑃𝑗 𝐴𝑧 + 𝐵𝑢 }

= min
𝑢∈𝑅𝑚

𝑢𝑇 𝑅 + 𝐵𝑇𝑃𝑗𝐵 𝑢 + 2𝑧𝑇𝐴𝑇𝑃𝑗𝐵𝑢 + 𝑧𝑇 𝑄 + 𝐴𝑇𝑃𝑗𝐴 𝑧

≜ min
𝑢∈𝑅𝑚

ℎ(𝑢)

▪
𝜕ℎ

𝜕𝑢
𝑢 = 2𝑢𝑇 𝑅 + 𝐵𝑇𝑃𝑗𝐵 + 2𝑧𝑇𝐴𝑇𝑃𝑗𝐵 = 0
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Optimizer: 𝜇𝑗+1
∗ (𝑧) = − 𝑅 + 𝐵𝑇𝑃𝑗𝐵

−1
𝐵𝑇𝑃𝑗𝐴𝑧 ≜ −𝐾𝑗+1𝑧

where 𝐾𝑗+1 = 𝑅 + 𝐵𝑇𝑃𝑗𝐵
−1
𝐵𝑇𝑃𝑗𝐴
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▪ Derivation (cont.)

▪ 𝑉𝑗+1 𝑧 = min
𝑢∈𝑅𝑚

ℎ 𝑢 = ℎ 𝑢∗

= −𝐾𝑗𝑧
𝑇
𝑅 + 𝐵𝑇𝑃𝑗𝐵 −𝐾𝑗𝑧 + 2𝑧𝑇𝐴𝑇𝑃𝑗𝐵 −𝐾𝑗𝑧 + 𝑧𝑇 𝑄 + 𝐴𝑇𝑃𝑗𝐴 𝑧

= 𝑧𝑇 𝑄 + 𝐴𝑇𝑃𝑗𝐴 − 𝐴𝑇𝑃𝑗𝐵 𝑅 + 𝐵𝑇𝑃𝑗𝐵
−1
𝐵𝑇𝑃𝑗𝐴 𝑧

≜ 𝑧𝑇𝑃𝑗+1𝑧

where 𝑃𝑗+1 ≜ 𝑄 + 𝐴𝑇𝑃𝑗𝐴 − 𝐴𝑇𝑃𝑗𝐵 𝑅 + 𝐵𝑇𝑃𝑗𝐵
−1
𝐵𝑇𝑃𝑗𝐴

▪ If at time 𝑘, the state is at 𝑥𝑘, then the optimal control applied at time 
𝑘 is 

𝑢𝑘
∗ = 𝜇𝑁−𝑘

∗ 𝑥𝑘 = 𝐾𝑁−𝑘𝑥𝑘
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▪ Summary of LQR

▪ Value function is given by: 𝑉𝑗 𝑧 = 𝑧𝑇𝑃𝑗𝑧, where 𝑃𝑗 is given by the so-
called Riccati recursion:

𝑃𝑗+1 = 𝑄 + 𝐴𝑇𝑃𝑗𝐴 − 𝐴𝑇𝑃𝑗𝐵 𝑅 + 𝐵𝑇𝑃𝑗𝐵
−1
𝐵𝑇𝑃𝑗𝐴

▪ To compute the LQR controller:

▪ Start from initial matrix: 𝑃0 = 𝑄𝑓

▪ Riccati recursion: 𝑃𝑗 ← 𝑃𝑗−1

▪ Compute optimal feedback gain:  𝐾𝑗 = 𝑅 + 𝐵𝑇𝑃𝑗−1𝐵
−1
𝐵𝑇𝑃𝑗−1𝐴

▪ Apply LQR controller:

▪ Start from an IC: 𝑥0
▪ For 𝑘 = 0, … ,𝑁 − 1

▪ Compute:  𝑢𝑘
∗ = −𝐾𝑁−𝑘𝑥𝑘

∗ ,

▪ 𝑥𝑘+1
∗ = 𝐴𝑥𝑘

∗ + 𝐵𝑢𝑘
∗
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▪ Infinite horizon case:

▪ It can be proved that if 𝐴, 𝐵 is controllable and 𝐴, 𝐺 is observable, 
where 𝑄 = 𝐺𝑇𝐺, then as 𝑁 → ∞, 

▪ 𝑃𝑗 → 𝑃∗, and 𝐾𝑗 → 𝐾∗, with 𝜆 𝐴 − 𝐵𝐾∗ < 1

▪ 𝑃∗ and 𝐾∗ satisfy the algebraic equations:

𝑃∗ = 𝐴𝑇 𝑃∗ − 𝑃∗𝐵 𝑅 + 𝐵𝑇𝑃∗𝐵 −1𝐵𝑇𝑃∗ 𝐴 + 𝑄

K∗ = 𝑅 + 𝐵𝑇𝑃∗𝐵 −1𝐵𝑇𝑃∗𝐴

25



CLEAR Lab @ SUSTechWei Zhang
26

Coding Example


