Fall 2021 ME424 Modern Control and Estimation

Lecture Note 8 2 Dynamic Programming & 1/ Linear Quadratic Regulator

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

- Closed-loop eigenvalues roughly indicate system response, but do not represent all factors: symptotic.behavior
 - Same eigenvalues may also have different transient responses
 - We often want control input to be small, which cannot be formally 'addressed with eigenvalue assignment approach)
- optimization modern engineering Metric-based controller design
 - Represent design objectives in terms a cost function
 - Cost functions typically penalize
 - state deviation from 0
 - Large control effort
 - These are conflicting goals: larger control can often drive state to zero faster

min lly

Falman Filter: min E(11x-\$45)11)

General Discrete-Time Optimal Control Problem

• Dynamics:
$$x_{k+1} = f(x_k, u_k) \in$$

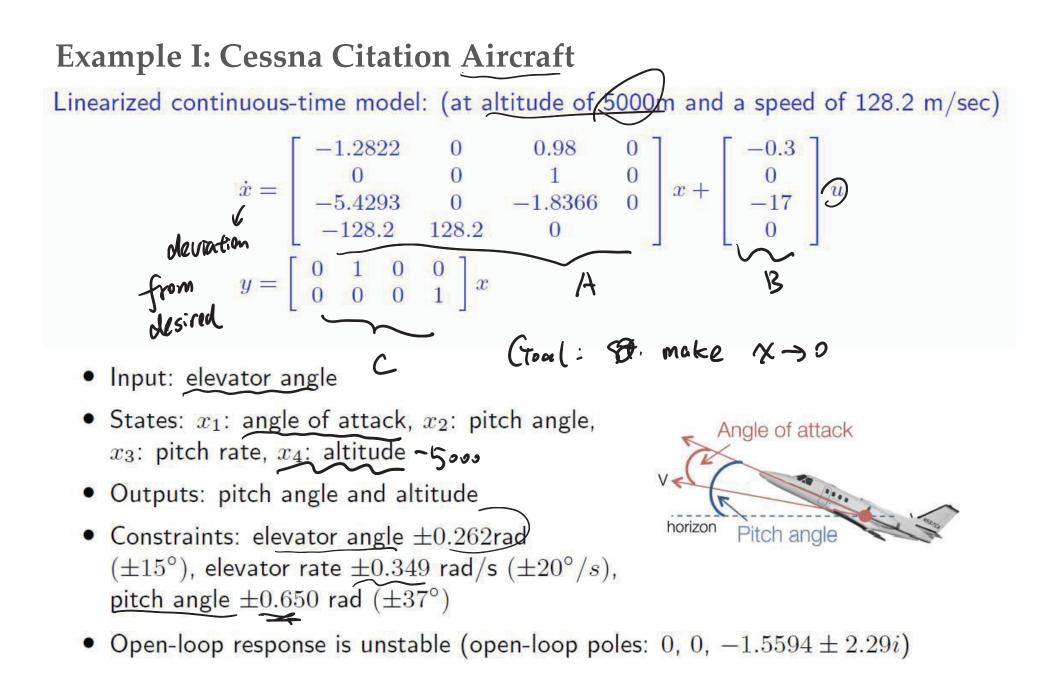
- e.g. monter contril y femperature < 80° • State constraints: $x_k \in X$
- Pfunc of state Xk Control constraints: $u_k \in U(x_k)$
- torgue 5 35 Nm Controller (Control law): $\mu_k: X \to U$
- N-700 (0,00) E infinite-horizon problem Control Horizon: [0, N]
- Control policy vs. control inputs:
 - Control policy: a sequence of control laws
 - $\pi = \{ \mathcal{U}_{d}(\cdot), \mathcal{U}_{n}(\cdot) \cdots \} \longrightarrow \mathcal{U}_{n}(\infty)$ Control inputs: a sequence of control actions

R= EM(.) M(.) .. M(.)} () Stationary policy

General Discrete-Time Optimal Control Problem

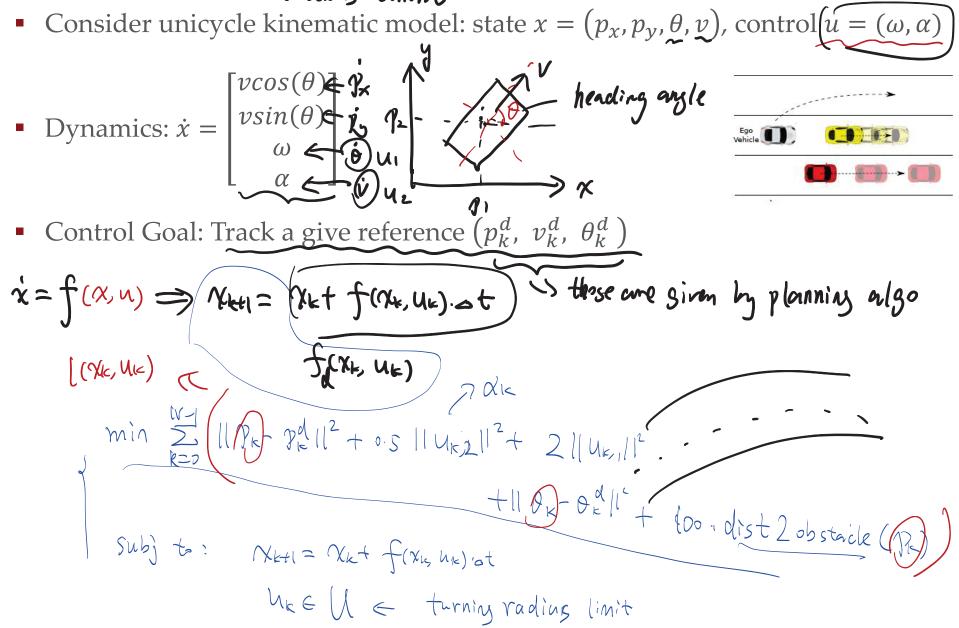
- *N*-horizon cost: $J_N(x_0, u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)$
- Infinite horizon cost: $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} l(x_k, u_k)$

- Finite Horizon Optimal Control (N < ∞)
 - For given initial state $z \in \mathbb{R}^n$, find the control input u_0, u_1, \dots, u_{N-1} to
 - Minimize: $J_N(z, u) = \sum \left[\left(\chi_{k}, y_k \right) + g(y_k) \right]$



objective: to drive & so with small "Control effort" Example I: Cessna Citation Aircraft (A-B, C) • Obtain DT-Model dt = 0.25s \Rightarrow $\chi_{kH} = A_{M} + B_{d} u_{k}$ $\chi_{kH} = C_{d} \chi_{k}$ Choose cost func: running ust: $l(x_k, u_k) = \frac{11}{11} \frac{11}{1$ • Choose constraint set: $|(\chi_k, \eta_k)| \geq |00| ||\chi_k||^2 + ||\eta_k||^2$ state constraint : [UK] E. 262 A We, 2 [\$ 0.65 rentro $|\dot{u}| \leq 0.349 \implies |u_k - u_{k-1}| \leq 0.349.st$ Overall optimal control problem: $\min \left(\sum_{k=0}^{N-1} L(x_k, u_k) \right) + g(x_N)$ depends (Z) < Subject to: $X_{k+1} = A_1 X_k + B_0 U_k$, $X_0 = B$ $U_k | \leq 0.262$, $|X_{k,2}| \leq 0.65$, $|U_{k-1}| \leq 0.246 \times a_25$ $U_{lc} \in U_{l}(Y_k)$ Wei Zhang LEAR Lab @ SUSTech

Example III: Motion Planning for Autonomous Vehicle Tracking Control



CLEAR Lab @ SUSTech

Wei Zhang

Outline

- General Discrete-Time Optimal Control Problem
- Short Introduction to Dynamic Programming

Linear Quadratic Regulator

Dynamic Programming (DP):

- Most important tool for solving deterministic and stochastic optimal control problems
- Divide & conquer: The *N*-horizon optimal solution depends on the *N* 1 horizon optimal solution, which in turns depend on the *N* 2 horizon optimal solution ...
- We solve 0-horizon first, then 1-horizon, ..., eventual solve the *N*-horizon optimal control problem.
- The divide & conquer approach is grounded by a fundamental principle: Bellman's principle of optimality

Any segment along an optimal trajectory is also optimal among all the trajectories joining the two end points of the segment

Variational optimality condition

B

Dynamic Programming (DP) goul: Solve N-horizon OC.

• For arbitrary integer $j \ge 0$, the *j*-horizon optimal control problem:

$$\begin{array}{c} \chi^{2} + | \\ \downarrow_{j}(z) = \min_{u_{0}, \dots, u_{j-1}} \left\{ g(x_{j}) + \sum_{k=0}^{j-1} l(x_{k}, u_{k}) \right\}, \\ \text{subject to} \qquad x_{k+1} = f(x_{k}, u_{k}), \quad x_{0} = z \\ u_{k} \in U(x_{k}), \quad k = 0, \dots, j-1 \end{array}$$

- $V_j^*(z)$: *j*-horizon value function, i.e. minimum cost if sys starts from state *z* when there are *j* steps left to reach final time
- Let u₀^{*}, u₁^{*}, ..., u_{j-1}^{*} is the optimal solution to the above prob.
 If system is at state *z* when there are *j* steps left, the first step of the optimal control is u₀^{*}, the second step is u₁^{*},

$$f:N: \qquad \chi_{0}=2 \xrightarrow{u_{0}^{*}} \chi_{1}^{*}=f(\chi_{0}, u_{0}^{*}) \xrightarrow{u_{1}^{*}} \chi_{2}^{*} \cdots \xrightarrow{\chi_{N}^{*}}$$

$$(u_{0}^{*}=\mu_{N}^{*}(2) \qquad (u_{1}^{*}=\mu_{N}^{*}(\chi_{1}^{*}) \qquad (u_{N}^{*}) \xrightarrow{u_{N}^{*}} \chi_{N}^{*} \cdots \xrightarrow{\chi_{N}^{*}}$$

$$13$$

min X

Vall

Dynamic Programming: Value Iteration

- Value Iteration: Compute $V_N(z)$ iteratively from $V_0(z)$
- 0-horizon problem (degenerate case):

$$j=0 \implies V_0(z)=g(z)$$

• 1-horizon problem : $V_1(z) = \min_{\substack{u \in \mathcal{U}(z) \\ u \in \mathcal{$

min Xter

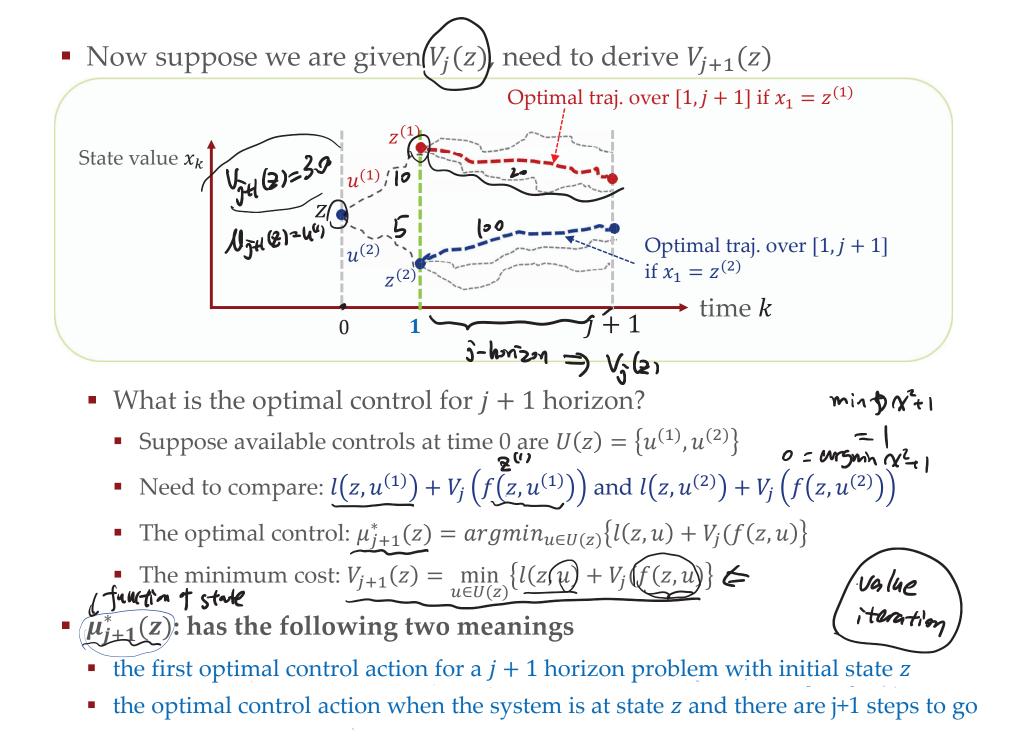
min 27,

$$V_{2}(z) = \min_{u_{0} \in U(z)} \left\{ \frac{U(x_{u}, u_{0}) + U(x_{u}, u_{1}) + g(x_{0})}{u_{0} \in U(x_{1})} \right\}$$

$$= \min_{u_{0} \in U(z)} \left\{ \frac{U(x_{u}, u_{0}) + u_{0}}{u_{0} \in U(z)} + \frac{u_{0}}{u_{0} \in U(z)} + \frac{u_{0}}{u_{0} \in U(z)} + \frac{u_{0}}{u_{0} \in U(z)} + \frac{u_{0}}{u_{0} \in U(z)} \right\}$$

$$= \min_{u_{0} \in U(z)} \left\{ \frac{U(z, u_{0}) + U_{1}(f(z, u_{0}))}{x_{1}} \right\}$$

$$= \max_{u_{0} \in U(z)} \left\{ \frac{U(z, u_{0}) + U_{1}(f(z, u_{0}))}{x_{1}} \right\}$$



Value Iteration Algorithm

- System dynamics: $x_{k+1} = f(x_k, u_k)$ with $u_k \in U(x_k)$
- Determine *u* by solving optimization problem:

Minimize: $J_N(z,u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)$ subject to:control constraint $u_k \in U(x_k)$,
system dynamics $x_{k+1} = f(x_k, u_k), x_0 = z$

• Solve problem through **value iteration**: (namely, iteratively compute the value function for 0-horizon, 1-horizon, ..., N-horizon problems)

• **Step 0**: (0-horizon): $V_0(z) = g(z)$

• Step *j*: given $V_j(z)$ and the optimal control laws $\mu_j^*(z), \mu_{j-1}^*, (z) \dots, \mu_0^*(z)$ for the remaining *j* steps, compute:

•
$$V_{j+1}(z) = \min_{u \in U(z)} \{ l(z, u) + V_j(f(z, u)) \}$$

•
$$\mu_{j+1}^*(z) = argmin_{u \in U(z)} \{ l(z, u) + V_j(f(z, u)) \}$$

• $j \leftarrow j + 1$, until j = N

- Value iteration algorithm output:
 - Value functions: $V_0(z), ..., V_N(z)$
 - Optimal control laws: $\mu_j^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_{j-1}f(z, u)\}, j = 1, ..., N$
 - The optimal control action if sys is at *z* and there are *j* steps to go
- How to use these control laws?
 - Optimal system trajectory
 - Time 0: $x_0 = \hat{x} \rightarrow \text{control action: } u_0^* = \mu_N^*(\hat{x})$
 - Time 1: $x_1^* = f(\hat{x}, u_0^*) \rightarrow \text{control action: } u_1^* = \mu_{N-1}^*(x_1^*)$
 - Time 2: $x_2^* = f(x_1^*, u_1^*) \rightarrow \text{control action: } u_2^* = \mu_{N-2}^*(x_2^*)$
 - •
 - Time N 1: $x_{N-1}^* = f(x_{N-2}^*, u_{N-2}^*) \rightarrow \text{control action: } u_{N-1}^* = \mu_1(x_{N-1}^*)$
 - Time $N: x_N^* = f(x_{N-1}^*, u_{N-1}^*)$
- In general: at time *k*: **optimal control** $u_k^* = \mu_{N-k}^*(x_k^*)$

• Example: Find shortest path from
$$a_1$$
 to a_4
• $V_0(z) = g(z) = \int_{\infty}^{0} \int_{z=a_{\psi}}^{1} \int_{z=a_{\psi}}^{2} \int_{z=a_{\psi}}^{a_{\tau}} \int_{z=a_{\psi}}^{$

• Example: Find shortest path from
$$a_1$$
 to a_4

$$\frac{V_1(2)}{V_2(2)} = \begin{cases}
2, & i \neq 2 = a_5 \\
5 & i \neq 2 = a_3 \\
0, & i \neq 2 = a_4 \\
\infty, & Otherwise
\end{cases}
a_1 \qquad a_7 \qquad a_7 \qquad a_5 \\
a_1 \qquad a_7 \qquad a$$

Wei Zhang

CLEAR Lab @ SUSTech

17

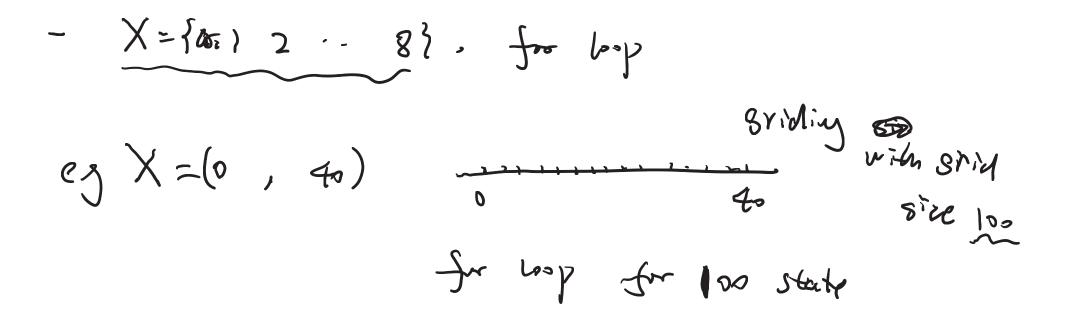
$$\mathbb{C} \qquad \begin{array}{c} \lambda_{k+1} = f(\lambda_k, \mu_k) \\ h_k \in \mathcal{U}(\lambda_k) \\ \lambda_k \in \chi \end{array}$$

$$j$$
-horizon problem: $V_{j}(z) = \min J_{j}(z, u)$
 $u_{2, -}u_{j-1}$
Subj to - \bigcirc

Start from
$$\overline{D}=0$$
, $V_0(2)=g(2)$

Value iteration:

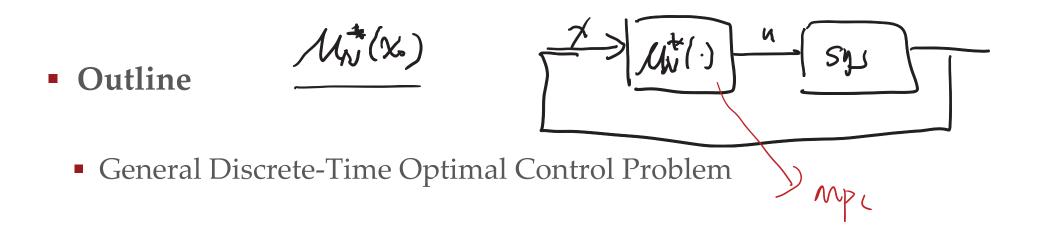
$$V_{5+1}(z) = \min_{\substack{u \in [1] \\ u = [1]$$



$$(\mathcal{S}_{1}) = [\mathcal{X}_{1}], \quad \mathcal{X}_{1} \in [0, 4_{0})$$

 $\mathcal{X}_{2} \in [0, 4_{0})$
 $\mathcal{X}_{2} \in [0, 4_{0})$
 $(\mathcal{X}_{1} \in [0, 4_{0})$
 $(\mathcal{X}_{2} \in [0, 4_{0})]$

 $\chi_2 \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_{12} \end{pmatrix}$, \rightarrow # grids points = 100



Short Introduction to Dynamic Programming

Linear Quadratic Regulator

- Linear Quadratic Regulator (LQR):
 - *N*-horizon LQR: Find control sequence $u_0, u_1, ..., u_{N-1}$ to minimize $J_N(z, u)$, subject to **linear dynamics constraints**:

where
$$J_N(x_0, u) = x_N^T Q_f x_N + \sum_{k=0}^{N-1} \left[x_k^T Q x_k + u_k^T R u_k \right]$$

$$\int (x_N) = \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k^T Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_k Q x_k + u_k^T R u_k \right] - \frac{1}{2} \left[x_N Q_f x_N + \sum_{k=0}^{N-1} \left[x_N Q_f$$

• Infinite-horizon LQR: Find control sequence $u_0, u_1, ...,$ to minimize $J_{\infty}(x_0, u)$ subject to linear dynamics constraints: $x_{k+1} = Ax_k + Bu_k$ where $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} [x_k^T Q x_k^T + u_k^T R u_k^T]$

21

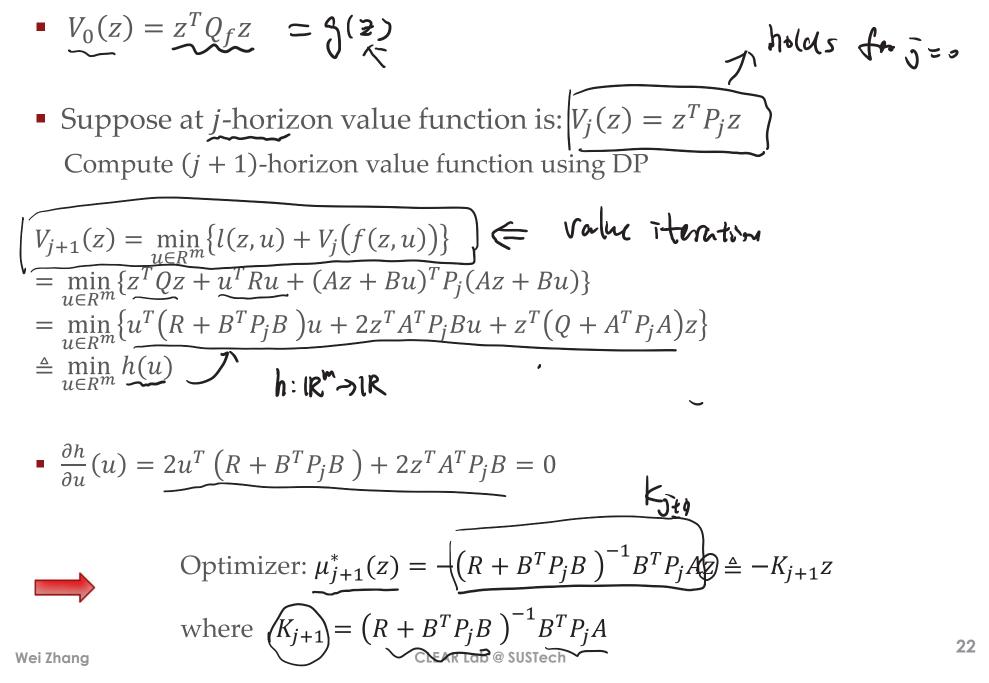
$$z^{T}Pz; \text{ quadratic cost term, penalizing deviation from 0, e.g.:}$$

$$\text{if } P = I, \text{ then } z^{T}Pz = ||z||^{2}$$

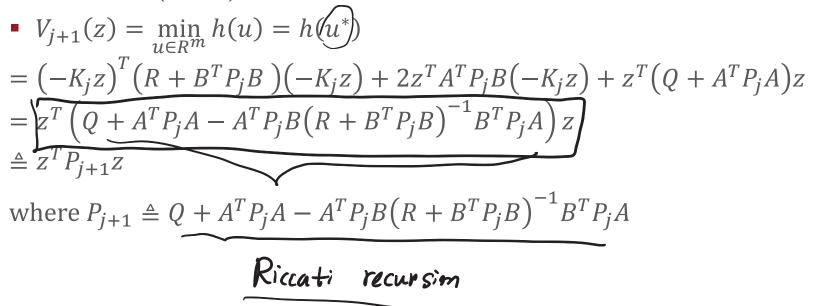
$$\text{if } P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \text{ then } z^{T}Pz = z_{1}^{2} + 2z_{2}^{2}, \text{ penalizes } z_{2} \text{ more than } z_{1}$$

$$z = \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix}, \quad z = z_{1}^{T}pz \int_{CLEAR \text{ Lob @ SUSTech}} z_{1}$$

Solution of LQR using Dynamic Programming (DP)



Derivation (cont.)



If at time k, the state is at x_k, then the optimal control applied at time k is

$$\underbrace{(u_k^*)}_{k} = \underbrace{\mu_{N-k}^*(x_k)}_{\mathcal{T}} = \mathcal{K}_{N-k} x_k$$

- Summary of LQR $P_0 \in Q_N \longrightarrow P_1, -2P_2 \dots P_N$
 - Value function is given by: $V_j(z) = z^T P_j z$, where P_j is given by the so-called Riccati recursion:

V,(Z)

 $-1/U_{1}$

$$P_{j+1} = Q + A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A$$

- To compute the LQR controller:
 - Start from initial matrix: $P_0 = Q_f$
 - Riccati recursion: $P_j \leftarrow P_{j-1}$
 - Compute optimal feedback gain: $K_j = \left(R + B^T P_{j-1}B\right)^{-1} B^T P_{j-1}A$
- Apply LQR controller:
 - Start from an IC: *x*₀
 - For k = 0, ..., N 1
 - Compute: $u_k^* = -K_{N-k}x_k^*$,

•
$$x_{k+1}^* = Ax_k^* + Bu_k^*$$

- Infinite horizon case:
 - It can be proved that if (A, B) is controllable and (A, G) is observable, where $Q = G^T G$, then as $N \to \infty$,

•
$$P_j \rightarrow P^*$$
, and $K_j \rightarrow K^*$, with $|\lambda(A - BK^*)| < 1$

$$P^* = A^T [P^* - P^*B(R + B^T P^*B)^{-1}B^T P^*]A + Q$$

$$(K^*) = (R + B^T P^*B)^{-1}B^T P^*A$$

Coding Example