Fall 2022 ME424 Modern Control and Estimation

Lecture Note 3 Least Squares and Basic System Identification

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

- Last lecture: obtain discrete-time linear state space model from
 - physical process
 - given continuous time state space model
 - given nonlinear state space model
 - given discrete time transfer function
- The goal of this lecture note:
 - Iearn how to build model based on observed input-output data pairs
 - General case beyond the scope of this course
 - Focus on special case, where first obtain transfer function model from input-output data pairs, and then obtain the corresponding state space model
 - Main method: Least Squares

Least-Squares Problem Formulation:

Measurement Equation:

 $y = g(\theta) + v$

- $y \in R^m$: measurements data
- $\theta \in \Theta \subseteq \mathbb{R}^n$: parameter to be estimated, where Θ is the constraint set for feasible parameters
- $v \in \mathbb{R}^m$: unknown measurement noise
- $g: \mathbb{R}^n \to \mathbb{R}^m$: known (possibly) nonlinear function relates θ with measurement y

• Least Squares Example:

i	1	2	3	4	5
x	1	0.5	-2	3	2.5
y	1.4	1.2	-3.6	6.8	4.5

Least-Squares Problem Formulation:

Problem Statement: Find the best parameter in the constraint set
 Θ that minimizes the difference between the model and the measured data

$$\min_{\theta \in \Theta} J(\theta) = \min_{\theta \in \Theta} \left| |y - g(\theta)| \right|^2$$

• Linear Least Squares: $g(\theta) = H\theta$, where $H \in \mathbb{R}^{m \times n}$ is a given deterministic matrix

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

Optimization of multivariable function

• 1st –order necessary condition for optimality of $J(\theta)$

Matrix calculus:

• If
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
, then $\frac{\partial f}{\partial x}(\mathbf{x}) = Df(x) =$

Optimization of multivariable function

• **Gradient**: For scaler valued multivariate function $f: \mathbb{R}^n \to \mathbb{R}$, its gradient is defined as:

• For
$$f: \mathbb{R}^n \to \mathbb{R}$$
, notational convention $\nabla f(x) = \left(\frac{\partial f}{\partial x}(x)\right)^T$

- Some references use $\frac{\partial f}{\partial x}$ to denote gradient
- Directional derivative: $Df(x; d) = \lim_{\alpha \to 0} \frac{f(x+\alpha d) f(x)}{h}$

- Some calculus examples:
 - f(x) = Ax

•
$$f(x) = x^T A x$$

• Exercise: compute
$$\frac{\partial f}{\partial x}(x)$$
, where $x \in \mathbb{R}^n$, and $f(x) = x^T x \cdot x$

- Derivation of linear least square solutions
 - Normal equation:

• Solution with full rank *H*

Geometric interpretation of linear least squares

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

• Linear Least Squares Example:

i	1	2	3	4	5
x	1	0.5	-2	3	2.5
y	1.4	1.2	-3.6	6.8	4.5

• Assume $y = \alpha x + \beta$

• Change hypothesis, assume $y = be^{ax}$

• Change hypothesis, assume that $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

Application to System Identification for Linear Systems

• ARX(*p*, *q*) model :(Autoregressive with exogenous input)

$$y(k) + \alpha_1 y(k-1) + \dots + \alpha_p y(k-p)$$

 $= \beta_0 u(k) + \beta_1 u(k-1) + \dots + \beta_q u(k-q) + v(k)$

• v(k) : noise signal

• Model parameter:
$$\theta = [\alpha_1, \dots, \alpha_p, \beta_0, \beta_1, \dots, \beta_q]^T$$

• One-step predictor:

$$\hat{y}(k|\theta) = -\alpha_1 y(k-1) - \dots - \alpha_p y(k-p) + \beta_0 u(k) + \beta_1 u(k-1) + \dots + \beta_q u(k-q)$$

• System ID problem for ARX model:

Given data pairs $\{(u(k), y(k))\}_{k \le N}$, find the parameter vector θ that minimizes cost:

-
$$J(\hat{\theta}) = \sum_{k=1}^{N} ||\hat{y}(k|\hat{\theta}) - y(k)||^2$$

• Formulate as least square problem:

given data set, $(u_1, y_1), (u_2, y_2), ..., (u_m, y_m)$

• Regressor:

Derivation continued

• System ID Example I:

$$G(z) = \frac{(z^2+b)}{z^3+az}$$
, find best estimate for a, b ,
given data set $(u_1, y_1), (u_2, y_2), \dots, (u_{20}, y_{20})$

• System ID Example 2:

$$u(k) \longrightarrow G(z) \xrightarrow{e(k)} y(k)$$

- $G(z) = \frac{z-1}{z-a}$, where *a* is an unknown scalar
- Data: $u(1) = 1, u(2) = \frac{1}{2}, u(3) = 1, y(1) = 2, y(2) = 1, y(3) = 2$

- Least-Squares Problem Formulation
- Solution to Linear Least-Squares Problems
- Linear Least-Squares Examples
- Applications to System ID
- Nonlinear Least Squares

• Nonlinear Least Squares:

$$\min_{\theta \in \Theta} J(\theta) = \left| |y - g(\theta)| \right|^2$$

- For general nonlinear function $g(\theta)$, analytical solution to the above optimization is not available
- Numerical optimization algorithms can be used to find the optimizer

 $\theta^* = \operatorname{argmin}_{\theta \in \Theta} J(\theta)$

Nonlinear Least Square Example: Navigation by range measurement:

- • : beacons with known positions $b^{(i)} = (p_i, q_i)$
- \approx : target with unknown position $\theta = (\theta_1, \theta_2)$
- y_i : known measured distance or range from beacon *i*: typical assumption: $y_i = ||b^{(i)} - \theta|| + v_i$

• Given measurements $y_1, y_2, ..., y_m$, find the best target location θ

• We can choose cost function:
$$J(\theta) = \sum_{i=1}^{m} (y_i - ||b^{(i)} - \theta||)^2$$

Coding Example