Fall 2022 ME424 Modern Control and Estimation

Lecture Note 5 State-Feedback and Output Feedback Control

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

- Eigenvalues

 System Response
- Full State-feedback: Eigenvalue Assignment
- Luenberger Observer Design
- Output-feedback Control and Separation Principle

- State space solution (with zero control u(k) = 0)
 - $x(k) = A^k x(0)$
 - Simple Case (Diagonalizable):

$$A = TDT^{-1} = T \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_q \end{bmatrix} T^{-1}$$

$$D^k = \begin{bmatrix} \lambda_1^k & & & \\ & \lambda_2^k & & \\ & & \ddots & \\ & & & \lambda_q^k \end{bmatrix}$$

• Transient response depends on the terms of the form λ_i^k

General case: Jordan form

$$A = TJT^{-1} = T\begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_q \end{bmatrix} T^{-1} \Rightarrow A^k =$$

■ Fact: if
$$J_i = \begin{bmatrix} \lambda_i & 1 & 0 \\ 0 & \lambda_i & 1 \\ 0 & 0 & \lambda_i \end{bmatrix} \Rightarrow J_i^k = \begin{bmatrix} \lambda_i^k & k\lambda_i^{k-1} & \frac{k(k-1)}{2}\lambda_i^{k-2} \\ 0 & \lambda_i^k & k\lambda_i^{k-1} \\ 0 & 0 & \lambda_i^k \end{bmatrix}$$

Transient response depends on the terms of the form

$$\frac{k(k-1)\cdots(k-j)}{j!}\lambda_i^{k-j}$$

 The shape of transient response is determined by the locations of the eigenvalues

$$A = \rho \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \Rightarrow \lambda_{1,2} = \rho(\cos(\theta) \pm j\sin(\theta))$$

e.g:
$$x(k) = A^k x(0)$$
, with $x(0) = [1 \ 1]^T$

- Large $|\lambda|$ produces slow convergence, while a small $|\lambda|$ produces fast convergence
- A real λ produces a monotonic response, while a complex λ produces an oscillatory response
- For a complex λ , the response becomes more oscillatory as the ratio $\left|\frac{Im(\lambda)}{Re(\lambda)}\right|$ increases
- Control design goal (for linear system): to modify the eigs of original system to achieve desired response.
- Feedback control fall into two categories
 - State Feedback: all state variables are measured and can be used in feedback u(t) = g(x(t))
 - Output Feedback: Only output y = Cx + Du (typically dim(y)<dim(x)) are measured and can be used in feedback

$$u(t) = g(y(t))$$

Outline

Eigenvalues ↔ System Response

• Full State-feedback: Eigenvalue Assignment

Luenberger Observer Design

Output-feedback Control and Separation Principle

The concept of Closed-loop System

The concept of closed-loop System

- State feedback: full state information available to make control decision:
 - We focus on linear case: Let u = -Kx
 - we just need to design the feedback gain matrix *K*

- Plug in to obtain closed-loop system:
 - x(k + 1) = Ax(k) + Bu(k) =
 - Closed-loop system matrix: (A-BK)
 - Pole placement (eigenvalue assignment) problem: find K so that the closed-loop system A BK has the desired set of eigenvalues

Single Input case:

Consider controllable canonical form

$$\bar{A} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & \cdots & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & \cdots & -\alpha_{n-1} \end{pmatrix}, \bar{B} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, \qquad \bar{C} \text{ and } \bar{D} \text{ arbitrary}$$

• If a system (\bar{A}, \bar{B}) is in controllable canonical form, then it is always controllable (verify this by checking the controllability matrix of (A, B)

• Characteristic polynomial for \bar{A}

$$\bar{A} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & \cdots & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & \cdots & -\alpha_{n-1} \end{pmatrix}$$

- Characteristic polynomial for closed-loop $A_{cl} = \bar{A} \bar{B}\bar{K}$
 - Assume: $\overline{K} = [k_1, k_2, ..., k_n]$

$$\Delta_{A_{cl}}(\lambda) = \lambda^n + (\alpha_{n-1} + k_n)\lambda^{n-1} + (\alpha_{n-2} + k_{n-1})\lambda^{n-2} + \dots + (\alpha_1 + k_2)\lambda + (\alpha_0 + k_1)$$

- Eigenvalue assignment: given desired $\lambda_1, ..., \lambda_n$, how to choose \overline{K} ?
 - **Step 1**: Find desired closed-loop characteristic polynomial:
 - $\Delta_{desired}(\lambda) = (\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) = \lambda^n + \alpha_{n-1}^* \lambda^{n-1} + \cdots + \alpha_1^* \lambda + \alpha_0^*$

• Step 2: We know: $\Delta_{A_{cl}}(\lambda) = \lambda^n + (\alpha_{n-1} + k_n)\lambda^{n-1} + (\lambda_{n-2} + k_{n-1})\lambda^{n-2} + \dots + (\alpha_1 + k_2)\lambda + (\alpha_0 + k_1)$ choose k_1, \dots, k_n to match coefficients

• Eigenvalue assignment example:

$$\bar{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$
, $\bar{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, desired eig: $\lambda_1^* = 0.5$, $\lambda_2^* = -0.5$

- What about general single input system (A, B), with $B \in \mathbb{R}^{n \times 1}$
 - **Recall:** If original system: x(k + 1) = Ax(k) + Bu(k). Controllability matrix: $M_c = [B \ AB \cdots \ A^{n-1}B]$
 - Under similarity transformation: $x(k) = P\bar{x}(k)$, we have: $\bar{x}(k+1) = \bar{A}\bar{x}(k) + \bar{B}u(k)$, with $\bar{A} = P^{-1}AP$, $\bar{B} = P^{-1}B$ $\bar{M}_c = [\bar{B} \bar{A}\bar{B} \cdots \bar{A}^{n-1}\bar{B}] = P^{-1}M_c$
 - FACT: $eig(A) = eig(\bar{A})$, hence $\Rightarrow \Delta_A(\lambda) = \Delta_{\bar{A}}(\lambda)$
- Main idea:
 - transform the system into a controllable canonical form (\bar{A}, \bar{B})
 - Design gain \overline{K} to assign $eig(\overline{A} \overline{B}\overline{K})$ to desired ones
 - Transform back to the original coordinate to get K so that eig(A-BK) = eig($\bar{A} \bar{B}\bar{K}$)

- Eigenvalue assignment procedure for general single input system (*A*, *B*)
 - Step 1: Similarity transform: find P, such that $x(k) = P\bar{x}(k)$, and $\bar{x}(k)$ dynamic is in controllable canonical form
 - (1) Given A, compute: $\Delta_A(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0$
 - (2) We know: $\Delta_{\bar{A}}(\lambda) = \Delta_A(\lambda)$, by controllable canonical form structure, we have

$$\bar{A} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & \cdots & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & \cdots & -\alpha_{n-1} \end{pmatrix}, \bar{B} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$$

(3) Compute controllability matrix: \overline{M}_c using $(\overline{A}, \overline{B})$ and M_c using (A, B)

$$P = M_c \overline{M}_c^{-1}$$

• Step 2: find \overline{K} to assign desired eigs for $(\overline{A}, \overline{B})$

• Step 3: compute $K = \overline{K}P^{-1}$

• Note that A - BK and $\bar{A} - \bar{B}\bar{K}$ have the same set of eigs

• Coding Example: $A = [2 \ 0 \ -2; \ 4 \ -2 \ 2; \ 0 \ 2 \ -2], B = [1 \ 0 \ 1]';$

- What about multiple inputs: $(B \in \mathbb{R}^{n \times m}, m \ge 2)$
 - Sometimes has redundancy, we can just use one column of B to assign eigs

 General case is quite involved, use numerical tools to assign eigs or use LQR controller which will be covered later

- Remarks on choosing desired poles (eigenvalues)
 - Continuous time case:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- ω_n : natural frequency
- ζ : damping ratio ($\zeta > 1$ overly-damped, $\zeta = 1$ critically damped, $\zeta < 1$ under-damped)
- Under damped system (ζ < 1): two complex poles:

$$p_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$$
, define: $\theta = \cos^{-1} \zeta$

$$T_s=rac{4}{\zeta\omega_n}$$
 , settling time

$$T_p = rac{\pi}{\omega_n \sqrt{1-\zeta^2}}$$
, peak time

• Tradeoffs:

1. Poles moves to the left, i.e. larger $\zeta \omega_n$

PO= 100
$$e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$
 percent overshoot 2. Poles moves up, i.e., larger $\omega_n\sqrt{1-\zeta^2}$

3. Smaller θ

- Discrete time case:
 - Relations:

$$p_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$

- *T*: sampling time
- $z = e^{sT}$
- Pole selection example:
 - Suppose we want settling time $T_s \le 5$ sec and $PO \le 35\%$

Outline

- Eigenvalues ↔ System Response
- Full State-feedback: Eigenvalue Assignment
- Luenberger Observer Design
- Output-feedback Control and Separation Principle

Observer Design:

- state vector is not available; u can only depend on output y
- **Observer:** estimate system state vector $\hat{x}(k) \approx x(k)$ given y(k), u(k) and (A, B, C, D)
- **Key**: generate estimate iteratively according to known system dynamics:

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + L \left[y(k) - C\hat{x}(k) - Du(k) \right]$$

- Iteratively update state estimate using previous estimate $\hat{x}(k)$ and new data available at time k: u(k), y(k),
- This way of estimating state is called Luenberger observer

- State estimation error vector: $e(k) = x(k) \hat{x}(k)$
- Error dynamics: e(k + 1) = (A LC)e(k)

■ **Goal**: design L matrix such that eigs(A - LC) are at desired locations to ensure estimation error converge to zero with a desired transient

- **Observer design**: Find observer gain matrix *L* such that error dynamics have desired eigenvalues
- **Duality Theorem**: (A, C) observable \Leftrightarrow (A^T, C^T) controllable (remark: We say a pair (F, H) is controllable if a system with "A" matrix equal to F and "B" matrix equal to H is controllable. This also means $M_c = [H \ FH \ F^2H \ \cdots \ F^{n-1}H]$ is full rank)

• Consequence of the duality theorem: If system (A,C) is observable, we can use feedback gain design method to find observer gain L such that eig(A - LC) has desired eigs

Outline

- Eigenvalues ↔ System Response
- Full State-feedback: Eigenvalue Assignment
- Luenberger Observer Design
- Output-feedback Control and Separation Principle

- Output feedback control procedure:
 - System: x(k + 1) = A x(k) + Bu(k), y(k) = Cx(k) + Du(k)
 - Find K, L such that A BK and A LC have desired eigs
 - At time k = 0, pick arbitrary $\hat{x}(0)$
 - For $k \ge 0$, given $\hat{x}(k)$, u(k), y(k), compute:
 - $\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + L\left[y(k) C\hat{x}(k) Du(k)\right]$
 - $u(k+1) = -K\hat{x}(k+1)$

General guideline:

eigenvalues of (A - BK) are chosen to meet the design specifications on the transient response. The eigenvalues of (A-LC) are chosen **much faster** than those of (A - BK)

- Separation principle: Observer eigs and controller eigs can be assigned separately
 - Closed-loop dynamics: joint state vector: $\begin{vmatrix} x(k) \\ e(k) \end{vmatrix}$ with $u(k) = -K\hat{x}(k)$
 - Dynamics for joint state vector:

$$\begin{bmatrix} x(k+1) \\ e(k+1) \end{bmatrix} = \begin{bmatrix} Ax(k) + Bu(k) \\ Ax(k) + Bu(k) - (A\hat{x}(k) + Bu(k) + L [y(k) - C\hat{x}(k) - Du(k)]) \end{bmatrix}$$
$$= \begin{bmatrix} Ax(k) + B(-K)\hat{x}(k) \\ (A - LC)e(k) \end{bmatrix} = \begin{bmatrix} Ax(k) - BKx(k) + BKe(k) \\ (A - LC)e(k) \end{bmatrix}$$
$$= \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x(k) \\ e(k) \end{bmatrix}$$

■ The design of *K* and *L* can be done separately to meet specified controller and observer performance (characterized by eigs(A-BK) and eigs(A-LC))

Summary