Fall 2022 ME424 Modern Control and Estimation

Lecture Note 10 Dynamic Programming & Linear Quadratic Regulator

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

- Closed-loop eigenvalues roughly indicate system response, but do not represent all factors:
 - Same eigenvalues may also have different transient responses
 - We often want control input to be small, which cannot be formally addressed with eigenvalue assignment approach

- Metric-based controller design
 - Represent design objectives in terms a cost function
 - Cost functions typically penalize
 - state deviation from 0
 - Large control effort
 - These are conflicting goals: larger control can often drive state to zero faster

General Discrete-Time Optimal Control Problem

- Dynamics: $x_{k+1} = f(x_k, u_k)$
- State constraints: $x_k \in X$
- Control constraints: $u_k \in U(x_k)$
- Controller (Control law): $\mu_k: X \to U$
- Control Horizon: [0, *N*]
- Control policy vs. control inputs:
 - Control policy: a sequence of control laws
 - Control inputs: a sequence of control actions

General Discrete-Time Optimal Control Problem

• Closed-loop Dynamics under policy $\pi = \{\mu_0, \mu_1, ...\}$

- Quantify performance of controller through cost function
 - Running (stage) cost: $l(x_k, u_k)$

• Terminal cost: $g(x_N)$

• *N*-horizon cost: $J_N(x_0, u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)$

• Infinite horizon cost: $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} l(x_k, u_k)$

- Finite Horizon Optimal Control ($N < \infty$)
 - For given initial state $z \in \mathbb{R}^n$, find the control input u_0, u_1, \dots, u_{N-1} to
 - Minimize: $J_N(z, u)$
 - **subject to:** $u_k \in U(x_k)$, control constraint
 - $x_{k+1} = f(x_k, u_k), x_0 = z$ system dynamics constraints

• Here: $U(x_k)$ is the set of state-dependent control action e.g. $U(x) = \{u \le 2x\}$

• Optimizers $\{u_0^*, ..., u_{N-1}^*\}$ depends on the initial state z

Example I: Cessna Citation Aircraft

Linearized continuous-time model: (at altitude of 5000m and a speed of 128.2 m/sec)

$$\dot{x} = \begin{bmatrix} -1.2822 & 0 & 0.98 & 0 \\ 0 & 0 & 1 & 0 \\ -5.4293 & 0 & -1.8366 & 0 \\ -128.2 & 128.2 & 0 \end{bmatrix} x + \begin{bmatrix} -0.3 \\ 0 \\ -17 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x$$

- Input: elevator angle
- States: x_1 : angle of attack, x_2 : pitch angle, x_3 : pitch rate, x_4 : altitude
- Outputs: pitch angle and altitude
- Constraints: elevator angle ± 0.262 rad $(\pm 15^{\circ})$, elevator rate ± 0.349 rad/s $(\pm 20^{\circ}/s)$, pitch angle ± 0.650 rad $(\pm 37^{\circ})$

• Open-loop response is unstable (open-loop poles: $0, 0, -1.5594 \pm 2.29i$)

Example I: Cessna Citation Aircraft

• Obtain DT-Model dt = 0.25s

Choose cost func:

Choose constraint set:

Overall optimal control problem:

Example II: Shortest Path Problem

- $X = \{a_1, ..., a_8\}$; U(x): possible next site to visit
- $x_{k+1} = f(x_k, u_k)$
- Running cost: l(z, u) =

Optimal control problem:

Example III: Motion Planning for Autonomous Vehicle

• Consider unicycle kinematic model: state $x = (p_x, p_y, \theta, v)$, control $u = (\omega, \alpha)$

• Dynamics:
$$\dot{x} = \begin{bmatrix} v\cos(\theta) \\ v\sin(\theta) \\ \omega \\ \alpha \end{bmatrix}$$

• Control Goal: Track a give reference $(p_k^d, v_k^d, \theta_k^d)$

Outline

General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

Dynamic Programming (DP):

- Most important tool for solving deterministic and stochastic optimal control problems
- **Divide & conquer:** The *N*-horizon optimal solution depends on the N-1 horizon optimal solution, which in turns depend on the N-2 horizon optimal solution ...
- We solve 0-horizon first, then 1-horizon, …, eventual solve the *N*-horizon optimal control problem.
- The divide & conquer approach is grounded by a fundamental principle: Bellman's principle of optimality

Any segment along an optimal trajectory is also optimal among all the trajectories joining the two end points of the segment

Dynamic Programming (DP)

• For arbitrary integer $j \ge 0$, the *j*-horizon optimal control problem:

$$\begin{split} V_{j}(z) &= \min_{u_{0},\dots,u_{j-1}} \left\{ g \left(x_{j} \right) + \sum_{k=0}^{j-1} l(x_{k},u_{k}) \right\}, \\ \text{subject to} & x_{k+1} = f(x_{k},u_{k}), \quad x_{0} = z \\ & u_{k} \in U(x_{k}), \quad k = 0,\dots,j-1 \end{split}$$

- $V_j^*(z)$: *j*-horizon value function, i.e. minimum cost if sys starts from state z when there are j steps left to reach final time
- Let $u_0^*, u_1^*, ..., u_{j-1}^*$ is the optimal solution to the above prob. If system is at state z when there are j steps left, the first step of the optimal control is u_0^* , the second step is $u_1^*,$

Dynamic Programming: Value Iteration

- Value Iteration: Compute $V_N(z)$ iteratively from $V_0(z)$
- 0-horizon problem (degenerate case):

1-horizon problem

• 2-horizon problem:

• Now suppose we are given $V_i(z)$, need to derive $V_{i+1}(z)$

- What is the optimal control for j + 1 horizon?
 - Suppose available controls at time 0 are $U(z) = \{u^{(1)}, u^{(2)}\}$
 - Need to compare: $l(z, u^{(1)}) + V_j(f(z, u^{(1)}))$ and $l(z, u^{(2)}) + V_j(f(z, u^{(2)}))$
 - The optimal control: $\mu_{j+1}^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_j(f(z, u))\}$
 - The minimum cost: $V_{j+1}(z) = \min_{u \in U(z)} \{l(z, u) + V_j(f(z, u))\}$
- $\mu_{j+1}^*(z)$: has the following two meanings
 - the first optimal control action for a j + 1 horizon problem with initial state z
 - the optimal control action when the system is at state *z* and there are j+1 steps to go

Value Iteration Algorithm

- System dynamics: $x_{k+1} = f(x_k, u_k)$ with $u_k \in U(x_k)$
- Determine *u* by solving optimization problem:

```
Minimize: J_N(z,u) = g(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k)

subject to: control constraint u_k \in U(x_k),

system dynamics x_{k+1} = f(x_k, u_k), x_0 = z
```

- Solve problem through **value iteration**: (namely, iteratively compute the value function for 0-horizon, 1-horizon, ..., N-horizon problems)
 - **Step 0**: (0-horizon): $V_0(z) = g(z)$
 - **Step** *j*: given $V_j(z)$ and the optimal control laws $\mu_j^*(z)$, μ_{j-1}^* , (z) ..., $\mu_0^*(z)$ for the remaining j steps, compute:
 - $V_{j+1}(z) = \min_{u \in U(z)} \{l(z, u) + V_j(f(z, u))\}$
 - $\mu_{j+1}^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_j(f(z, u))\}$
 - $j \leftarrow j + 1$, until j = N

- Value iteration algorithm output:
 - Value functions: $V_0(z), ..., V_N(z)$
 - Optimal control laws: $\mu_j^*(z) = argmin_{u \in U(z)} \{l(z, u) + V_{j-1}f(z, u)\}, j = 1, ..., N$
 - The optimal control action if sys is at z and there are j steps to go
- How to use these control laws?
 - Optimal system trajectory
 - Time 0: $x_0 = \hat{x} \rightarrow \text{control action: } u_0^* = \mu_N^*(\hat{x})$
 - Time 1: $x_1^* = f(\hat{x}, u_0^*) \rightarrow \text{control action: } u_1^* = \mu_{N-1}^*(x_1^*)$
 - Time 2: $x_2^* = f(x_1^*, u_1^*) \rightarrow \text{control action: } u_2^* = \mu_{N-2}^*(x_2^*)$

 - Time N-1: $x_{N-1}^*=f(x_{N-2}^*,u_{N-2}^*) \to \text{control action}$: $u_{N-1}^*=\mu_1(x_{N-1}^*)$
 - Time $N: x_N^* = f(x_{N-1}^*, u_{N-1}^*)$
- In general: at time k: optimal control $u_k^* = \mu_{N-k}^*(x_k^*)$

- **Example:** Find shortest path from a_1 to a_4
 - $V_0(z) =$

• $V_1(z) =$

• **Example:** Find shortest path from a_1 to a_4

Outline

General Discrete-Time Optimal Control Problem

Short Introduction to Dynamic Programming

Linear Quadratic Regulator

Linear Quadratic Regulator (LQR):

• *N*-horizon LQR: Find control sequence $u_0, u_1, ..., u_{N-1}$ to minimize $J_N(z, u)$, subject to **linear dynamics constraints**:

$$x_{k+1} = Ax_k + Bu_k, x_0 = z$$
 where : $J_N(x_0, u) = x_N^T Q_f x_N + \sum_{k=0}^{N-1} \left[x_k^T Q x_k + u_k^T R u_k \right]$

■ Infinite-horizon LQR: Find control sequence $u_0, u_1, ...$, to minimize $J_{\infty}(x_0, u)$ subject to linear dynamics constraints: $x_{k+1} = Ax_k + Bu_k$ where $J_{\infty}(x_0, u) = \sum_{k=0}^{\infty} \left[x_k^T Q x_k^T + u_k^T R u_k^T \right]$

- $z^T Pz$: quadratic cost term, penalizing deviation from 0, e.g.:
 - if P = I, then $z^T P z = ||z||^2$
 - if $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $z^T P z = z_1^2 + 2 z_2^2$, penalizes z_2 more than z_1

Solution of LQR using Dynamic Programming (DP)

$$V_0(z) = z^T Q_f z$$

• Suppose at *j*-horizon value function is: $V_j(z) = z^T P_j z$ Compute (j + 1)-horizon value function using DP

$$V_{j+1}(z) = \min_{u \in R^m} \{ l(z, u) + V_j(f(z, u)) \}$$

$$= \min_{u \in R^m} \{ z^T Q z + u^T R u + (Az + Bu)^T P_j(Az + Bu) \}$$

$$= \min_{u \in R^m} \{ u^T (R + B^T P_j B) u + 2z^T A^T P_j B u + z^T (Q + A^T P_j A) z \}$$

$$\triangleq \min_{u \in R^m} h(u)$$

Optimizer:
$$\mu_{j+1}^*(z) = -(R + B^T P_j B)^{-1} B^T P_j A z \triangleq -K_{j+1} z$$

where
$$K_{j+1} = (R + B^T P_j B)^{-1} B^T P_j A$$

Derivation (cont.)

•
$$V_{j+1}(z) = \min_{u \in R^m} h(u) = h(u^*)$$

= $(-K_j z)^T (R + B^T P_j B) (-K_j z) + 2z^T A^T P_j B (-K_j z) + z^T (Q + A^T P_j A) z$
= $z^T (Q + A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A) z$
 $\triangleq z^T P_{j+1} z$
where $P_{j+1} \triangleq Q + A^T P_j A - A^T P_j B (R + B^T P_j B)^{-1} B^T P_j A$

• If at time k, the state is at x_k , then the optimal control applied at time k is

$$u_k^* = \mu_{N-k}^*(x_k) = K_{N-k}x_k$$

Summary of LQR

• Value function is given by: $V_j(z) = z^T P_j z$, where P_j is given by the so-called Riccati recursion:

$$P_{j+1} = Q + A^{T} P_{j} A - A^{T} P_{j} B (R + B^{T} P_{j} B)^{-1} B^{T} P_{j} A$$

- To compute the LQR controller:
 - Start from initial matrix: $P_0 = Q_f$
 - Riccati recursion: $P_j \leftarrow P_{j-1}$
 - Compute optimal feedback gain: $K_j = (R + B^T P_{j-1} B)^{-1} B^T P_{j-1} A$
- Apply LQR controller:
 - Start from an IC: x_0
 - For k = 0, ..., N 1
 - Compute: $u_k^* = -K_{N-k}x_k^*$,
 - $x_{k+1}^* = Ax_k^* + Bu_k^*$

- Infinite horizon case:
 - It can be proved that if (A, B) is controllable and (A, G) is observable, where $Q = G^T G$, then as $N \to \infty$,
 - $P_j \rightarrow P^*$, and $K_j \rightarrow K^*$, with $|\lambda(A BK^*)| < 1$
 - P^* and K^* satisfy the algebraic equations:

$$P^* = A^T \left[P^* - P^* B (R + B^T P^* B)^{-1} B^T P^* \right] A + Q$$

$$K^* = \left(R + B^T P^* B \right)^{-1} B^T P^* A$$

Coding Example