Fall 2022 ME424 Modern Control and Estimation

Lecture Note 7: Kalman Filter - Probability Review

Prof. Wei Zhang Department of Mechanical and Energy Engineering SUSTech Institute of Robotics Southern University of Science and Technology

> zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

What is probability?

- A formal way to quantify the uncertainty of our knowledge about the physical world
- Formalism: Probability Space (Ω, \mathcal{F}, P)
 - Ω : **sampling space**: a set of all possible outcomes (maybe infinite)
 - *F*: event space: collection of events of interest (event is a subset of Ω)
 - *P*: *F* → [0,1] probability measure: assign event in *F* to a real number between 0 and 1

Axioms of probability:

- $P(A) \ge 0$
- $P(\Omega) = 1$
- $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
- Important consequences:
 - $P(\emptyset) = 0$
 - Law of total probability: $P(B) = \sum_{i}^{n} P(B \cap A_i)$, for any partitions $\{A_i\}$ of Ω
 - Recall a collection of sets $A_1, ..., A_n$ is called a partition of Ω if
 - $A_i \cap A_j = \emptyset$, for all $i \neq j$ (mutually exclusive)
 - $A_1 \cup A_2 \cdots \cup A_n = \Omega$

Conditional probability

Probability of event A happens given that event B has already occurred

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- We assume P(B) > 0 in the above definition
- What does it mean?
 - Conditional probability is a probability: $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$
 - "Conditional" means, (Ω̃, F̃, P̃) the is derived from an original probability space (Ω, F, P) given some event has occurred
 - After *B* occurred we are uncertain only about the outcomes inside *B*

• Bayes rule: relate $P(A \mid B)$ to $P(B \mid A)$ $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

- Events *A* and *B* are called (statistically) independent if
 - P(A|B) = P(A)
 - Or equivalently: $P(A \cap B) = P(A)P(B)$

• Example of conditional probability: A bowl contains 10 chips of equal size: 5 red, 3 white, and 2 blue. We draw a chip at random and define the event:

```
A = the draw of a red or a blue chip
```

Suppose you are told the chip drawn is not blue, what is the new probability of *A*

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

- What is random variable and random vector?
 - Deterministic variable:

Random variable:

How to specify probability measure

Discrete random variable: probability mass function (pmf)
 e.g. toss a coin or die

Continuous random variable: probability density function (pdf)
 e.g. temperature density

How to specify probability measure

• Random vector: scalar random variables listed according to certain order

• n-dimensional random vector:
$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

- Notation: We typically use capital to denote random variables (vectors) and lower case letter to denote specific values the random variable takes
- density function: $f(x), x \in \mathbb{R}^n$

• probability evaluation: $P(X \in A) = \int_A f(x) dx$

Expectation of a random vector $X \in \mathbb{R}^n$:

Continuous random vector: $E(X) = \int_{\mathbb{R}^n} x f(x) dx$

Discrete random vector: $E(X) = \sum_{x} x \cdot Prob(X = x)$

• Expectation:
$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{bmatrix}$$

• Examples: Let $X \in \mathbb{R}^2$ be discrete random variable with $Prob\left(X = \begin{bmatrix} 0\\1 \end{bmatrix}\right) = \frac{1}{2}$, $Prob\left(X = \begin{bmatrix} 1\\2 \end{bmatrix}\right) = \frac{1}{3'}$, $Prob\left(X = \begin{bmatrix} -1\\1 \end{bmatrix}\right) = \frac{1}{6'}$. Compute E(X)

 $\Gamma \Pi (\mathbf{x} \mathbf{z})$

Linearity of Expectation:

• Expectation of *AX* with deterministic constant $A \in \mathbb{R}^{m \times n}$ matrix: E(AX) = AE(X)

• More generally, E(AX + BY) = AE(X) + BE(Y)

• Example: Suppose
$$X \in R^2, Y \in R^3$$
, with $E(X) = \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$, $E(Y) = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, Compute $E(AX + BY)$

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

Jointly distributed random vectors: $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$

• Completely determined by joint density (mass) function: (X, Y) ~ $f_{XY}(x, y)$

Compute probability:

• marginal density: $X \sim f_X(x), Y \sim f_Y(y)$, where $f_X(x) = \int_{R^m} f_{XY}(x, y) dy, \qquad f_Y(y) = \int_{R^n} f_{XY}(x, y) dx,$

- Example: $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, $Prob\left(X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \frac{1}{2}$, $Prob\left(X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\right) = \frac{1}{3'}$, $Prob\left(X = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right) = \frac{1}{6}$
 - This is joint distribution for X_1, X_2

- The conditional density: $(X, Y) \sim f_{XY}(x, y)$
 - Quantify how the observation of a value of Y, Y = y, affects your belief about the density of X
 - The conditional probability definition implies (nontrivially)

 $P(A \mid B) = P(A \cap B)/P(B) \Rightarrow p_{X|Y}(X = i|Y = j) = \frac{p_{XY}(X = i, Y = j)}{\sum_{i} p_{XY}(X = i, Y = j)}$ $f_{X|Y}(x|y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$

- Law of total probability: $P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$ $f_X(x) = \int_{R^m} f_{X|Y}(x|y)f_Y(y)dy$ $f_Y(y) = \int_{P^n} f_{Y|X}(y|x)f_X(x)dx$
- *X* is independent of *Y*, denoted by $X \perp Y$, if and only if $f_{XY}(x, y) = f_X(x)f_Y(y)$

- Conditional expectation:
 - The conditional mean of X|Y = y is

$$E(X|Y = y) = \int_{R^n} x f_{X|Y}(x|y) dx$$
$$E(X|Y = y) = \sum_{i} i \cdot Prob(X = i|Y = y)$$

Frample 1.		X				
- Example 1.		2	3	4	5	6
• $E(X Y = 1)$	1	1/4	1/8	1/8		
	Y ²		1/6	1/12	1/12	
	3			1/12	1/24	1/24

- E(X | Y=3)
- Example 2: Suppose that (X, Y) is uniformly distributed on the square $S = {(x, y) : -6 < x < 6, -6 < y < 6}$. Find E(Y | X = x).

- Law of total probability implies:
 - $E(X) = \sum_{y} E(X|Y=y) \cdot p_Y(Y=y)$

• $E(g(X,Y)) = \sum_{y} E(g(X,Y)|Y=y) \cdot p_{Y}(Y=y)$

• Continue Example 1:

			X		
	2	3	4	5	6
1	1/4	1/8	1/8		
Y^2		1/6	1/12	1/12	
3			1/12	1/24	1/24

Example 3.: outcomes with equal chance: (1,1), (2, 0), (2,1), (1,0), (1,-1), (0,0), with g(X,Y) = X²Y²

Method 1: $E(g(X,Y)) = E(X^2Y^2) = 1^2 \cdot (-1)^2 \cdot \frac{1}{6} + 1^2 \cdot 1^2 \cdot \frac{1}{6} + 2^2 \cdot 1^2 \cdot \frac{1}{6} = 1$

Method 2: conditioning on values of Y = -1, 0, 1

	X			
	0	1	2	
-1	0	1/6	0	
y O	1/6	1/6	1/6	
1	0	1/6	1/6	

Covariance (Random variable case):

•
$$Cov(X,Y) = E\left(\left(X - E(X)\right)(Y - E(Y)\right)$$

Outline

Probability and Conditional Probability

Random Variables and Random Vectors

Jointly Distributed Random Vectors and Conditional Expectation

Covariance Matrix

- Covariance (Random variable case):
 - If Cov(X, Y) > 0, X and Y are positively correlated
 - If you see a realization of X larger than E(X), it is more likely for Y to be also larger than E(Y)

- If Cov(X, Y) < 0, X and Y are negatively correlated
 - If you see a realization of *X* larger than *E*(*X*), it is more likely for *Y* to be smaller than *E*(*Y*)

• If Cov(X, Y) = 0, X and Y are uncorrelated

- Covariance Matrix: $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$ $Cov(X, Y) = E\left((X - E(X))(Y - E(Y))^T\right)$
 - It is a $n \times m$ matrix: with $(Cov(X, Y))_{ij} = Cov(X_i, Y_j) = E((X_i E(X_i))(Y_j E(Y_j)))$

$$cov(X,Y) = \begin{bmatrix} cov(X_1,Y_1) & cov(X_1,Y_2) & \dots & cov(X_1,Y_m) \\ cov(X_2,Y_1) & cov(X_2,Y_2) & \dots & cov(X_2,Y_m) \\ \vdots & \vdots & \ddots & \vdots \\ cov(X_n,Y_1) & cov(X_n,Y_2) & \dots & cov(X_n,Y_m) \end{bmatrix}$$

Properties of Covariance
1. Cov(X + a, Y + b) = Cov(X, Y)

2.
$$Cov(X,Y) = Cov(Y,X)^T$$

3.
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

4.
$$Cov(AX, BY) = ACov(X, Y)B^T$$

5. If
$$X \perp Y$$
, $Cov(X, Y) = 0$

6. $Cov(X) \triangleq Cov(X, X)$ is positive semidefinite (p.s.d.)

• **Example**: Suppose you know $cov(X, Y) = \Sigma_{XY}$, $cov(X) = \Sigma_X, cov(Y) = \Sigma_Y$, what is Cov(AX + BY)?

• **Example:** Given that $E(Z) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $Cov(Z,Z) = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 8 \end{bmatrix}$. Let $P = \begin{bmatrix} Z_2 \\ Z_1 \end{bmatrix}$, $Q = Z_3$ Compute: Cov(P,Q), Cov(Q,2P) More discussions