Fall 2022 ME424 Modern Control and Estimation

Lecture Note 8: Kalman Filter - Derivations and Algorithm

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Kalman Filer Preview:

Given stochastic linear system described by

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$y_k = C_k x_k + D_k u_k + v_k$$

- **Kalman filter**: compute the "best" estimate of x_k given input-output data history $\{u_j, y_j\}_{j=0}^k$
- Kalman Filter Solution: $\hat{x}_k = E(x_k|y_0, y_1, ..., y_k)$

 Our goal: in-depth understanding of the assumptions, derivations of Kalman filter

Outline

Minimum Mean Squared Estimation (MMSE)

Gaussian Random Vectors

Kalman Filter Derivations

Summary and Implementation

Fundamental Theorem of Estimation

- Suppose we want to estimate the value of a hidden random vector $X \in \mathbb{R}^n$ based on observations of a related vector $Y \in \mathbb{R}^m$.
- We have to know the relationship between X and Y. Suppose we take probabilistic viewpoint of their relations, namely, $(X, Y) \sim f_{XY}(x, y)$

• An estimator $\phi(y)$ is a function that maps each measurement Y = y to an estimate \hat{x}

$$\begin{array}{c}
\phi(y) \\
\hline
\text{Estimator} \quad \hat{x}
\end{array}$$

• Mean-squared error of an estimator: $E(||\phi(Y) - X||^2)$

• **Example**: Given X,Y joint distribution, compute the mean-squared error for the estimator:

$$\phi(y) = 2y$$

$$\begin{array}{c|cccc}
 & X \\
2 & 3 \\
\hline
Y & 1 & 0.4 & 0.1 \\
2 & 0.2 & 0.3 \\
\end{array}$$

■ Theorem: The Minimum Mean-Squared Estimator for X given Y = y, that minimizes $E\left(\left|\left|\phi(Y) - X\right|\right|^2\right)$ is given by $\widehat{X}_{MMSE} = \phi_{MMSE}(y) = E(X|Y = y)$

Proof: $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$, $\phi: \mathbb{R}^m \to \mathbb{R}^n$, need to solve $\min_{\phi(\cdot)} E(||\phi(Y) - X||^2)$

Note: $E(||\phi(Y) - X||^2) = \int E(||\phi(Y) - X||^2 |Y = y) f_Y(y) dy$, thus we just need to find the estimator $\phi(\cdot)$ to minimize $E(||\phi(Y) - X||^2 |Y = y)$ for each y

$$E(||\phi(Y) - X||^{2}|Y = y) = E((\phi(Y) - X)^{T}(\phi(Y) - X)|Y = y)$$

$$= E(\phi(Y)^{T}\phi(Y) - \phi(Y)^{T}X - X^{T}\phi(Y) + X^{T}X|Y = y)$$

$$= E(\phi(Y)^{T}\phi(Y)|Y = y) - E(\phi(Y)^{T}X|Y = y) - E(X^{T}\phi(Y)|Y = y) + E(X^{T}X|Y = y)$$

$$= \phi(y)^{T}\phi(y) - 2\phi(y)^{T}E(X|Y = y) + E(X^{T}X|Y = y)$$

$$= (\phi(y) - E(X|Y = y))^{T}(\phi(y) - E(X|Y = y)) - E(X|Y = y)^{T}E(X|Y = y) + E(X^{T}X|Y = y)$$

 \Box Optimal ϕ is thus given by: $\phi(y) = E(X|Y = y)$

Remarks:

- 1. The MMSE is just the conditional mean !!
- 2. To compute the MMSE, the general way is to compute the conditional mean directly

• 3. Important special case:

If (X, Y) are jointly Gaussian random vectors, then there is a simple analytical form for the conditional mean

Outline

Minimum Mean Squared Estimation (MMSE)

Gaussian Random Vectors

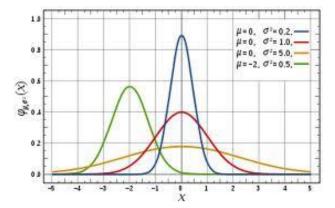
Kalman Filter Derivations

Summary and Implementation

Gaussian Random Vectors

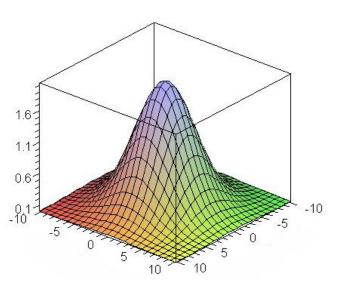
- Important due to central limit theorem
- 1D Gaussian: $X \sim N(\mu, \sigma), \mu \in R, \sigma \in R_+$

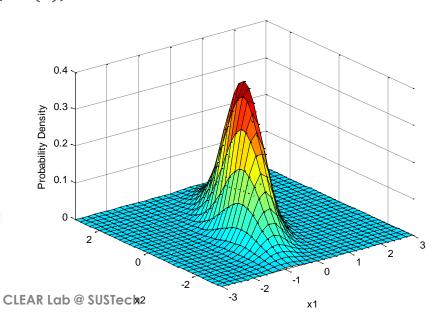
pdf:
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



■ n-D Gaussian: $X \sim N(\mu, \Sigma)$, $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$

pdf:
$$f_X(x) = \frac{1}{(2\pi)^{\frac{n}{2}}(\det(\Sigma))^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$





- Gaussian random vectors have nice properties
 - It can be presented by two parameters:

mean vector and covariance matrix

- Fact 1: Uncorrelated jointly Gaussian vectors are independent
- Fact 2: Linear transformation of Gaussian random vectors are Gaussian
- Fact 3: Conditional Gaussian is Gaussian
 - If general, checking whether a random variable is Gaussian or not requires computing its probability density function to see whether it is of the form of Gaussian. This can be quite involved.

• Fact 1: Independence between two Gaussians:

■ If $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$ are jointly Gaussians, then $X \perp Y$ if and only if $E(XY^T) = E(X) \cdot E(Y)^T$ Cov(X,Y) = 0

- However, if *X*, *Y* are both Gaussians, but are not jointly Gaussian, then the above tests do not hold in general
 - See supplemental note on joint Gaussian random vectors

• Fact 2: Affine transformation of Gaussian is still Gaussian

Let
$$X \sim N(\mu, \Sigma), \mu \in R^n, \Sigma \in R^{n \times n}, A \in R^{m \times n}, b \in R^m$$
, then
$$Z = AX + b \sim N(A\mu + b, A\Sigma A^T)$$

This can be used to test whether a random variable is Gaussian or not

Example:
$$X \sim N(\mu, \Sigma), X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix},$$

■ Is X₂ Guassian?

■ Is $Z = a_2X_2 + a_3X_3$ a Gaussian?

• Is
$$Y = \begin{bmatrix} X_1 \\ X_3 \end{bmatrix}$$
 a Gaussian?

■ Is $X_2 \perp X_1$? How about X_1 and X_3

■ Fact 3: Conditional Gaussian is Gaussian: Let $X \in R^n$, $Y \in R^m$ be jointly Gaussian with mean μ_X , μ_Y , covariance Σ_X , Σ_Y , Σ_{XY} , Σ_{YX} , i.e,

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim N(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{bmatrix})$$

then the conditional distribution of X given Y = y is Gaussian

$$X|Y = y \sim N(\mu_{X|Y=y}, \Sigma_{X|Y=y}),$$

where

$$\mu_{X|Y=y} = \mu_X + \Sigma_{XY}\Sigma_Y^{-1}(y - \mu_Y)$$

$$\Sigma_{X|Y=y} = \Sigma_X - \Sigma_{XY}\Sigma_Y^{-1}\Sigma_{YX}$$

• Example: suppose
$$Z = \begin{bmatrix} X \\ Y \end{bmatrix}$$
, where $X \in R^2, Y \in R$, and $Z \sim N \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 8 \end{pmatrix}$

■ Another example:
$$Z = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix}$$
, $Z \sim N \begin{pmatrix} \begin{bmatrix} -1 \\ 5 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 & 2 \\ -1 & 4 & 0.5 \\ 2 & 0.5 & 9 \end{bmatrix}$)

• MMSE example: $X \sim N\left(\begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}\right)$, let $Y = \begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix}X + V$, where $V \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$, V is independent of X. Find the MMSE of X given $Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

solution (continue)

Outline

Minimum Mean Squared Estimation (MMSE)

Gaussian Random Vectors

Kalman Filter Derivations

Summary and Implementation

Kalman Filter

Consider a stochastic linear system described by

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$y_k = C_k x_k + D_k u_k + v_k$$

- $x_k \in \mathbb{R}^n$ --- system state at time k
- $y_k \in \mathbb{R}^m$ --- measurement vector at time k
- $Y_k \triangleq \begin{bmatrix} y_0^T & y_1^T & \dots & y_k^T \end{bmatrix}^T$ --- collection of measurements up to time k
- $u_k \in \mathbb{R}^p$ --- system input at time k (deterministic input)
- $w_k \in \mathbb{R}^n$ --- process noise $\sim N(0, Q_k)$
- $v_k \in R^p$ --- measurement noise ~ $N(0, R_k)$
- Assume $x_0 \sim N(\mu_0, \Phi_0)$, $x_0 \perp w_k$, $x_0 \perp v_k$, $w_k \perp v_k$, $\forall k$

- Implications of the above assumption:
 - x_k is Gaussian and y_k is Gaussian for all $k \ge 0$ (VFY)

- **State estimation problem**: Find the MMSE of x_k given Y_k
- Solution using Fundamental Theorem: $E(x_k|Y_k)$
- Kalman filter is just a recursive way to compute the conditional mean as new measurement comes in

■ Define:
$$\hat{x}_{k|k} = E(x_k|Y_k)$$
, $\hat{x}_{k|k-1} = E(x_k|Y_{k-1})$

$$P_{k|k} = E\left((x_k - \hat{x}_{k|k})(x_k - \hat{x}_{k|k})^T \middle| Y_k\right)$$

$$P_{k|k-1} = E\left((x_k - \hat{x}_{k|k-1})(x_k - \hat{x}_{k|k-1})^T \middle| Y_{k-1}\right)$$

• Simplified notation: $\hat{x}_k \triangleq \hat{x}_{k|k}$, $P_k = P_{k|k}$

Before deriving Kalman filter, let's work on an example

Example:
$$x_{k+1} = A_k x_k + w_k$$
 $y_k = C_k x_k$ where $x_0 \sim N(0, \Sigma_x), w_k \sim N(0, \Sigma_w), A = \Sigma_w = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \Sigma_x = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \end{bmatrix}.$ Compute $\hat{x}_0 = E(x_0|y_0 = 1)$ and $\hat{x}_1 = E(x_1|y_0 = 1, y_1 = -1)$

Example continue..

Example continue...

Derivation of Kalman Filter

Goal of Kalman Filter: obtain recursive formula

• We can compute \hat{x}_0 , P_0

• Given \hat{x}_k , P_k , how to compute \hat{x}_{k+1} , P_{k+1} : divide this recursion into two stages: prediction and measurement update

■ **Step 1: prediction** (try to compute $\hat{x}_{k+1|k}$, $P_{k+1|k}$ using \hat{x}_k , P_k

• Summary of the prediction step:

$$\begin{split} \hat{x}_{k+1|k} &= A_k \hat{x}_k + B_k u_k, \\ P_{k+1|k} &= A_k P_k A_k^T + Q_k \end{split}$$

Step 2: measurement update

- We want $\hat{x}_{k+1} = E(x_{k+1}|Y_{k+1}) = E(x_{k+1}|Y_k, y_{k+1})$
- Up to now, we have $\hat{x}_{k+1|k}$ and $P_{k+1|k}$, i.e. the mean and covariance of conditional random variable $x_{k+1}|Y_k$
- How to find the mean and covariance of $x_{k+1} | \{Y_k, y_{k+1}\}$
- Define $Z = x_{k+1} | Y_k$, $W = y_{k+1} | Y_k \Rightarrow \hat{x}_{k+1} = E(Z|W)$

Derivation (continue)

Complete derivation will be posted online

Outline

Minimum Mean Squared Estimation (MMSE)

Gaussian Random Vectors

Kalman Filter Derivations

Summary and Implementation

Kalman Filter Notations

System model

Noise model

Measurement history

$$x_{k+1} = A_k x_k + B_k u_k + w_k$$
$$y_k = C_k x_k + D_k u_k + v_k$$

$$w_k \sim N(0, Q_k)$$
$$v_k \sim N(0, R_k)$$

$$Y_k = \{y_0, y_1, \dots, y_k\}$$

Filtered estimate

Filter error

Filter error covariance

$$\hat{x}_k = \hat{x}_{k|k} = E(x_k|Y_k)$$

$$\hat{x}_k = \hat{x}_{k|k} = E(x_k|Y_k)$$
 $e_k = x_k - \hat{x}_k$, with $E(e_k) = 0$

$$P_{k} = E\left(e_{k}e_{k}^{T}\right) = E\left(e_{k}e_{k}^{T} \mid Y_{k}\right)$$

Predicted estimate

Prediction error

Prediction error covariance

$$\hat{x}_{k|k-1} = E\left(x_k \mid Y_{k-1}\right)$$

$$e_{k|k-1} = x_k - \hat{x}_{k|k-1}$$
, with $E(e_{k|k-1}) = 0$

$$\hat{x}_{k|k-1} = E\left(x_k \mid Y_{k-1}\right) \qquad e_{k|k-1} = x_k - \hat{x}_{k|k-1}, \text{ with } E\left(e_{k|k-1}\right) = 0 \qquad P_{k|k-1} = E\left(e_{k|k-1}e_{k|k-1}^T\right) = E$$

Some facts:

- Unbiasedness: $E(e_k) = 0$ $E(e_{k|k-1}) = 0$
- Error covariance equals the conditional error covariance

$$E\left(e_{k}e_{k}^{T}\right) = E\left(e_{k}e_{k}^{T} \mid Y_{k}\right) \qquad E\left(e_{k|k-1}e_{k|k-1}^{T}\right) = E\left(e_{k|k-1}e_{k|k-1}^{T} \mid Y_{k-1}\right)$$

Mean squared error: $E(\|e_k\|^2) = \operatorname{trace}(P_k), \ E(\|e_{k|k-1}\|^2) = \operatorname{trace}(P_{k|k-1})$

Kalman Filter Diagram

$$\left\{ \hat{x}_{0\mid-1},P_{0\mid-1}
ight\}$$
 Initial condition

Prediction

1. Predict state ahead

Initial

condition

$$\hat{x}_{k|k-1} = A_{k-1}\hat{x}_{k-1} + B_{k-1}u_{k-1}$$

$$P_{k|k-1} = A_{k-1} P_{k-1} A_{k-1}^T + Q_{k-1}$$

k = k + 1

1. Compute Kalman gain

$$K_{k} = P_{k|k-1}C_{k}^{T} \left(C_{k}P_{k|k-1}C_{k}^{T} + R_{k}\right)^{-1}$$

Measurement Update

1. Predict state ahead
$$\hat{x}_{k|k-1} = A_{k-1}\hat{x}_{k-1} + B_{k-1}u_{k-1}$$
2. Prediction error covariance
$$P_{k|k-1} = A_{k-1}P_{k-1}A_{k-1}^T + Q_{k-1}$$
3. Update error covariance
$$P_{k|k-1} = A_{k-1}P_{k-1}A_{k-1}^T + Q_{k-1}$$

$$P_{k} = (I - K_{k}C_{k})P_{k|k-1}$$

Innovation

Either of the two initial conditions is enough to start the iteration

Coding Example