Fall 2022 ME424 Modern Control and Estimation

Lecture Note 9: Kalman Filter - Extended Kalman Filter

Prof. Wei Zhang
Department of Mechanical and Energy Engineering
SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Recall:

- Suppose we want to estimate the value of a hidden random vector $X \in \mathbb{R}^n$ based on observations of a related vector $Y \in \mathbb{R}^m$.
- We have to know the relationship between X and Y. Suppose we take probabilistic viewpoint of their relations, namely, $(X, Y) \sim f_{XY}(x, y)$
- An estimator $\phi(y)$ is a function that maps each measurement Y = y to an estimate \hat{x}

$$\begin{array}{c}
\phi(y) \\
\hline
\text{Estimator} \quad \hat{x} \\
\end{array}$$

■ **MMSE Theorem**: The Minimum Mean-Squared Estimator for X given Y = y, that minimizes $E\left(\left|\left|\phi(Y) - X\right|\right|^2\right)$ is given by $\widehat{X}_{MMSE} = \phi_{MMSE}(y) = E(X|Y = y)$

Recall:

- Kalman filter is a recursive way to compute $E(x_k|Y_k)$ for linear Guassian system
- For nonlinear systems, we can use Extended Kalman Filter (EKF)
 - System setup: $x_{k+1} = f(x_k, u_k) + w_k$ $y_k = h(x_k, u_k) + v_k$
 - $x_k \in \mathbb{R}^n$ ---- system state at time k
 - $y_k \in \mathbb{R}^m$ --- measurement vector at time k
 - $Y_k \triangleq \begin{bmatrix} y_0^T & y_1^T & \dots & y_k^T \end{bmatrix}^T$ --- collection of measurements up to time k
 - $u_k \in \mathbb{R}^p$ ---- system input at time k (deterministic input)
 - $w_k \in R^n \sim N(0, Q_k), v_k \in R^p \sim N(0, R_k)$
 - Assume $x_0 \sim N(\mu_0, \Phi_0)$, $x_0 \perp w_k$, $x_0 \perp v_k$, $w_k \perp v_j$, $\forall k, j$, and

$$w_k \perp w_j$$
, $v_k \perp v_j$, $\forall k \neq j$

Preview of Extended Kalman Filter

- By fundamental theorem of estimation, we know that the MMSE is given by $E(x_k|Y_k)$
 - So we again needs to compute $E(x_k|Y_k)$
- With nonlinear dynamics, x_k is a random variable that **may not be** Gaussian.
- Extended Kalman Filter tries to
 - Approximate x_k as a Gaussian

Approximate the nonlinear dynamics as linear dynamics

• Notations:
$$\hat{x}_{k|k} = E(x_k|Y_k)$$
, $\hat{x}_{k|k-1} = E(x_k|Y_{k-1})$

$$P_{k|k} = E\left((x_k - \hat{x}_{k|k})(x_k - \hat{x}_{k|k})^T \middle| Y_k\right)$$

$$P_{k|k-1} = E\left((x_k - \hat{x}_{k|k-1})(x_k - \hat{x}_{k|k-1})^T \middle| Y_{k-1}\right)$$

Simplified notation: $\hat{x}_k \triangleq \hat{x}_{k|k}$, $P_k = P_{k|k}$

Goal: recursively compute:

Extended Kalman Filter Derivation:

- Step 1: Prediction (via linearization):
 - Given $\hat{x}_k = E(x_k|Y_k)$, $P_k = E((x_k \hat{x}_k)(x_k \hat{x}_k)^T|Y_k)$,
 - Need: $\hat{x}_{k+1|k} = E(x_{k+1}|Y_k), \ P_{k+1|k} = E\left((x_{k+1} \hat{x}_{k+1|k})(x_{k+1} \hat{x}_{k+1|k})^T|Y_k\right)$
 - Recall the linear Gaussian case: $x_{k+1} = Ax_k + Bu_k + w_k$, the prediction step: $\hat{x}_{k+1|k} = A_k \hat{x}_k + B_k u_k$, $P_{k+1|k} = A_k P_k A_k^T + Q_k$
 - EKF: Linearize f(x, u) around the current state estimate \hat{x}_k and input u_k

Summary of EKF Prediction Step:
Linearization: $F_k \triangleq \frac{\partial f}{\partial x}\Big|_{\hat{x}_k, u_k}$ $\hat{x}_{k+1|k} = f(\hat{x}_k, u_k), \quad P_{k+1|k} = F_k P_k F_k^T + Q_k$

Extended Kalman Filter Derivation:

Step 2: Measurement update through linearization:

Recall the linear case:
$$K_{k+1} = P_{k+1|k}C^{T}(CP_{k+1|k}C^{T} + R_{k+1})^{-1}$$

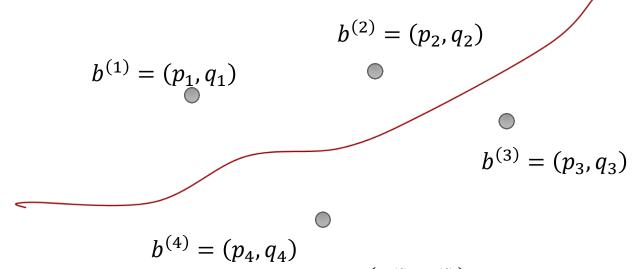
$$x_{k+1} = Ax_{k} + Bu_{k} + w_{k}$$

$$y_{k} = Cx_{k} + Du_{k} + v_{k}$$

$$\hat{x}_{k+1} = \hat{x}_{k+1|k} + K_{k+1}(y_{k+1} - C\hat{x}_{k+1|k} - Du_{k+1})$$

$$P_{k+1} = (I - K_{k+1}C)P_{k+1|k}$$

Application Example I for EKF



- beacons with known positions $b^{(i)} = (b_1^{(i)}, b_2^{(i)})$
- p_k : robot location at time k
- $y_{k,i}$: range measurement from beacon i at time k.
 - Typical measurement model: $y_{k,i} = ||b^{(i)} p_k|| + v_i$
- Goal: find the best estimate of p_k given measurement $\{y_0, y_1, ..., y_k\}$

• Derivation of the system model under constant speed assumption Here, we want to use dynamics information in addition to the beacon measurement. we assume constant speed motion model: • EKF derivation and implementation

Application Example II: Joint State and Parameter Estimation

Consider a 2nd-order continuous time system:

$$\ddot{y}(t) + 2\xi \omega_n \dot{y}(t) + \omega_n^2 y(t) = \omega_n^2 u(t)$$

- System state: $x = [y, \dot{y}]^T$, system parameter $\theta = [\xi, \omega_n]^2$
- System input-output u, y
- Question: How to use (u, y) data to jointly estimate x and θ ?