1. Let $X = [X_1 \ X_2 \ X_3]^T$ be a zero mean 3D Gaussian random vector with covariance

$$\Sigma_X = \begin{bmatrix} 2 & 0 & \sigma_{13} \\ 0 & 2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & 2 \end{bmatrix}$$

- (a) Suppose $\sigma_{13} = \sigma_{23} = \sigma_{31} = \sigma_{32} = 1$. Let $W = [X_1 X_2]^T$ and $Z = X_3$. Use the conditional mean formula for Gaussian random vectors discussed in class to compute the conditional mean and covariance of W given Z = 10. Without calculation, can you guess whether the conditional mean of W (each entry) is positive or negative if you observe Z = -10 instead. Briefly explain your answer.
- (b) Is X_1 independent of X_2 ? Under the same numerical values given in part (i), is $X_1|Z = 10$ independent of $X_2|Z = 10$? Dose your answer change if $\sigma_{13} = \sigma_{31} = 0$ and $\sigma_{23} = \sigma_{32} = 1$
- (c) Write down the probability density function for W|Z = 10. Use MATLAB "surf" function to plot the density function. Attach your code and plot.
- 2. Let $X = [X_1 \ X_2 \ X_3]^T$ be a 3D discrete random vector taking values in

ſ	$\left[\begin{array}{c}1\\-1\\3\end{array}\right]$		1		2		2		$\begin{bmatrix} 2 \end{bmatrix}$)
<	-1	,	1	,	-1	,	-1	,	1	>
l	3		2		2		3		2	J

with probabilities 0.1, 0.4, 0.05, 0.25, 0.2, respectively.

- (a) Find the conditional distribution (probability mass function): p(x₁|X₂ = −1, X₃ = 3) for the conditional variable X₁|(X₂ = −1, X₃ = 3) using the following two approaches:
 - i. (Direct Approach): Find $Prob(X_2 = -1, X_3 = 3)$ and directly compute the conditional probabilities $p(x_1|X_2 = -1, X_3 = 3)$ for all possible x_1 values.
 - ii. (Indirect Approach): (i) First compute probability mass function for the joint $(X_1, X_3)|X_2 = -1$, i.e., $p(x_1, x_3|X_2 = -1)$. For this you need to identify the possible pairs of values (X_1, X_3) may take and their probabilities under the condition that $X_2 = -1$. (ii) Then compute the marginal probability $Prob(X_3 = 3|X_2 = -1)$ using the joint distribution computed in part (i); (iii) Then using the results in the previous two parts to compute the $p(x_1|X_2 = -1, X_3 = 3)$

(b) Compute the MMSE for X_1 given the observations that $X_2 = -1, X_3 = 3$.

- 3. $\begin{bmatrix} X \\ Y \end{bmatrix} \sim N\left(\mu, \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}\right)$, where μ is random with $Prob\left(\mu = \mu^{(1)}\right) = 0.2$ and $Prob\left(\mu = \mu^{(2)}\right) = 0.8$. Here, $\mu^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mu^{(2)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Find the MSSE of X given Y = 1
- 4. Let X, V be independent Gaussians with $X \sim N\left(\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1 & -1\\-1 & 2 \end{bmatrix}\right)$ and $V \sim N(0,3)$. Given a measurement model Z = HX + V with $H = \begin{bmatrix} 1 & 2 \end{bmatrix}$. Compute E(X|Z=4) and Cov(X|Z=4) using the following two approaches
 - (a) Using conditional Gaussian formula
 - (b) Using Kalman filter formula