MEE5114 Advanced Control for Robotics

Lecture 2: Rigid Body Configuration and Velocity

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Free Vector

• Free Vector: geometric quantity with length and direction

• Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

• v denotes the physical quantity while Av denote its coordinate wrt frame {A}.

Point

• **Point**: *p* denotes a point in the physical space

• A point $p\ {\rm can}\ {\rm be}\ {\rm represented}\ {\rm by}\ {\rm a}\ {\rm vector}\ {\rm from}\ {\rm frame}\ {\rm origin}\ {\rm to}\ p$

• ${}^{A}p$ denotes the coordinate of a point p wrt frame {A}

• When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from the context.

Cross Product

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$
(1)

Properties:

- $||a \times b|| = ||a|| ||b|| \sin(\theta)$
- $a \times b = -b \times a$
- $a \times a = 0$

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$[a] \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
(2)

•
$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \leftrightarrow [a]$$

- $[a] = -[a]^T$ (called skew symmetric)
- $[a][b] [b][a] = [a \times b]$ (Jacobi's identity)

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin
 - $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal
 - $\hat{x} \times \hat{y} = \hat{z}$
- Rotation Matrix: specifies orientation of one frame relative to another

$${}^{\scriptscriptstyle A}R_B = \left[\begin{array}{cc} {}^{\scriptscriptstyle A}\hat{x}_B & {}^{\scriptscriptstyle A}\hat{y}_B & {}^{\scriptscriptstyle A}\hat{z}_B \end{array} \right]$$

• A valid rotation matrix R satisfies: (i) $R^T R = I$; (ii) det(R) = 1

Special Orthogonal Group

• Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as

 $SO(n) = \{ R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1 \}$

- SO(n) is a group. We are primarily interested in SO(3) and SO(2), rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- **Group** is a set G, together with an operation •, satisfying the following group axioms:

- Closure:
$$a \in G, b \in G \Rightarrow a \bullet b \in G$$

- Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c), \forall a, b, c \in G$
- Identity element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$.
- **Inverse element:** For each $a \in G$, there is a $b \in G$ such that $a \bullet b = b \bullet a = e$, where e is the identity element.

Use of Rotation Matrix (1/2)

- Representing an orientation ${}^{\scriptscriptstyle A}R_B$
- Changing the reference frame ${}^{\scriptscriptstyle A}R_B$:

Use of Rotation Matrix (2/2)

• Rotating a vector or a frame $\operatorname{Rot}(\hat{\omega}, \theta)$: will be discussed in next lecture.

Rigid Body Configuration

- Given two coordinate frames {A} and {B}, the configuration of B relative to A is determined by
 - ${}^{A}R_{B}$ and ${}^{A}o_{B}$

• For a (free) vector r, its coordinates ${}^{A}r$ and ${}^{B}r$ are related by:

• For a point p, its coordinates ${}^{\scriptscriptstyle A}p$ and ${}^{\scriptscriptstyle B}p$ are related by:

Homogeneous Transformation Matrix

• Homogeneous Transformation Matrix: ${}^{\scriptscriptstyle A}T_B$

• Homogeneous coordinates:

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $\|p_c - p_b\| = 4$

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/3)

• Consider a rigid body in motion. The body has infinitely many points $\{p_i\}$ with different velocities $\{v_{p_i}\}$

- All these velocities v_{p_i} 's are not independent
- They can be expressed by the same set of parameter
- Rigid body velocity (i.e. spatial velocity, twist) is one such parameterization

Rigid Body Velocity (2/3)

Pure rotation case

• General motion

Rigid Body Velocity (3/3)

٠

Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
 - Pick an arbitrary point r (reference point), which may or may not be body-fixed
 - Define v_r as the velocity of the body-fixed point currently coincides with r
 - For any body-fixed point p on the body: $v_p = v_r + \omega \times (\overrightarrow{rp})$
- Spatial Velocity (Twist): $V_r = (\omega, v_r)$
- Twist is a "physical" quantity (just like linear or angular velocity)
 - It can be represented in any frame for any chosen reference point \boldsymbol{r}
- A rigid body with $V_r = (\omega, v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r
 - This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

- Given frame $\{A\}$ and a spatial velocity ${\cal V}$

• Choose o_A (the origin of {A}) as the reference point to represent the rigid body velocity

• Coordinates of \mathcal{V} in {A}:

$${}^{A}\mathcal{V}_{o_{A}} = ({}^{A}\omega, {}^{A}v_{o_{A}})$$

- By default, we assume the origin of the frame is used as the reference point: ${}^{_{A}}\mathcal{V}{=}^{^{A}}\mathcal{V}{_{o_{A}}}$

Example of Twist I

• Example I:

Example of Twist II

• Example II:

 $r_s = (2, -1, 0), r_b = (2, -1.4, 0), w=2 \text{ rad/s}$

Change Reference Frame for Twist (1/2)

• Given a twist \mathcal{V} , let ${}^{A}\mathcal{V}$ and ${}^{B}\mathcal{V}$ be their coordinates in frames {A} and {B}

$${}^{A}\mathcal{V} = \left[\begin{array}{c} {}^{A}\omega \\ {}^{A}\upsilon_{A} \end{array} \right], \qquad {}^{B}\mathcal{V} = \left[\begin{array}{c} {}^{B}\omega \\ {}^{B}\upsilon_{B} \end{array} \right]$$

• They are related by ${}^{\scriptscriptstyle A}\mathcal{V} = {}^{\scriptscriptstyle A}X_B{}^{\scriptscriptstyle B}\mathcal{V}$

Change Reference Frame for Twist (2/2)

• If configuration $\{B\}$ in $\{A\}$ is T = (R, p), then

$${}^{\scriptscriptstyle A}X_B = [\operatorname{Ad}_T] \triangleq \left[\begin{array}{cc} R & 0\\ [p]R & R \end{array} \right]$$

Example I Revisited

Outline

• Rigid Body Configuration

- Rigid Body Velocity (Twist)
- Geometric Aspect of Twist: Screw Motion

Screw Motion: Definition

• Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - *h*: **screw pitch** which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

From Screw Motion to Twist

- Consider a rigid body under a screw motion with screw axis $\{\hat{s},h,q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .
- Find the twist ${}^{\scriptscriptstyle A}\mathcal{V}=({}^{\scriptscriptstyle A}\omega,{}^{\scriptscriptstyle A}v_{o_A})$

• **Result**: given screw axis $\{\hat{s}, h, q\}$ with rotation speed $\dot{\theta}$, the corresponding twist $\mathcal{V} = (\omega, v)$ is given by

$$\omega = \hat{s}\dot{\theta} \qquad v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta}$$

- The result holds as long as all the vectors and the twist are represented in the same reference frame

From Twist to Screw Motion

- The converse is true as well: given any twist $\mathcal{V} = (\omega, v)$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\dot{\theta}$
 - If $\omega = 0$, then it is a pure translation $(h = \infty)$

$$\hat{s} = rac{v}{\|v\|}, \quad \dot{ heta} = \|v\|, h = \infty, q ext{ can be arbitrary}$$

If
$$\omega \neq 0$$
:
 $\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}$

-

Examples: Screw Axis and Twist

• What is the twist that corresponds to rotating about \hat{z}_B with $\dot{\theta} = 2$?

• What is the screw axis for twist $\mathcal{V} = (0, 2, 2, 4, 0, 0)$?

Screw Representation of a Twist

- Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) \mathcal{V} can be interpreted in terms of a screw axis \hat{S} and a velocity $\dot{\theta}$ about the screw axis
- Consider a rigid body motion along a screw axis $\hat{S} = \{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as

$$\mathcal{V} = \hat{\mathcal{S}}\dot{ heta}$$

- In this notation, we think of $\hat{\mathcal{S}}$ as the twist associated with a unit speed motion along the screw axis $\{\hat{s},h,q\}$

More Discussions