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Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations
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Motivations

• Most engineering systems (including most robotic systems) are modeled by
Ordinary Differential (or Difference) Equations (ODEs)

• Example: Dynamics of 2R robot
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We can gather terms together into an equation of the form
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where M(θ) is the symmetric positive-definite mass matrix, c(θ, θ̇) is the vector
containing the Coriolis and centripetal torques, and g(θ) is the vector containing
the gravitational torques. These reveal that the equations of motion are linear
in θ̈, quadratic in θ̇, and trigonometric in θ. This is true in general for serial
chains containing revolute joints, not just for the 2R robot.

The M(θ)θ̈ + c(θ, θ̇) terms in Equation (8.10) could have been derived by
writing fi = miai for each point mass, where the accelerations ai are written
in terms of θ, by differentiating the expressions for (ẋ1, ẏ1) and (ẋ2, ẏ2) given
above:
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Figure 8.1: (Left) A 2R open chain under gravity. (Right) At θ = (0, π/2).

These equations are also referred to as the Euler–Lagrange equations with
external forces.1 The derivation can be found in dynamics texts.

We illustrate the Lagrangian dynamics formulation through two examples.
In the first example, consider a particle of mass m constrained to move on
a vertical line. The particle’s configuration space is this vertical line, and a
natural choice for a generalized coordinate is the height of the particle, which
we denote by the scalar variable x ∈ R. Suppose that the gravitational force mg
acts downward, and an external force f is applied upward. By Newton’s second
law, the equation of motion for the particle is

f −mg = mẍ. (8.4)

We now apply the Lagrangian formalism to derive the same result. The kinetic
energy is mẋ2/2, the potential energy is mgx, and the Lagrangian is

L(x, ẋ) = K(x, ẋ)− P(x) =
1

2
mẋ2 −mgx. (8.5)

The equation of motion is then given by

f =
d

dt

∂L
∂ẋ
− ∂L
∂x

= mẍ+ mg, (8.6)

which matches Equation (8.4).
We now derive the dynamic equations for a planar 2R open chain moving

in the presence of gravity (Figure 8.1). The chain moves in the x̂–ŷ-plane, with
gravity g acting in the −ŷ-direction. Before the dynamics can be derived, the
mass and inertial properties of all the links must be specified. To keep things
simple the two links are modeled as point masses m1 and m2 concentrated at

1The external force f is zero in the standard form of the Euler–Lagrange equations.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

• Screw theory, exponential coordinate, and Product of Exponential (PoE) are
based on the (linear) differential equation view of robot kinematics
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Linear Differential Equations (Autonomous)

• Linear Differential Equations: ODEs that are linear wrt variables
e.g.: {

ẋ1(t) + x2(t) = 0

ẋ2(t) + x1(t) + x2(t) = 0

{
ÿ(t) + z(t) = 0

ż(t) + y(t) = 0

• State-space form (1st-order ODE with vector variables):
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General Linear Control Systems

• General (Autonomous) Dynamical Systems: ẋ(t) = f(x(t))

- x(t) ∈ Rn: state vector, f : Rn → Rn: vector field

• Non-autonomous: ẋ(t) = f(x(t), t)

• Control Systems: ẋ(t) = f(x(t), u(t))

- vector field f : Rn × Rm depends on external variable u(t) ∈ Rm

• General Linear Control Systems:{
ẋ(t) = Ax(t) +Bu(t), with x(0) = x0

y(t) = Cx(t) +Du(t)

- x ∈ Rn: system state, u ∈ Rm: control input, y ∈ Rp: system output
- A,B,C,D are constant matrices with appropriate dimensions
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Existence and Uniqueness of ODE Solutions

• Function g : Rn → Rp is called Lipschitz over domain D ⊆ Rn if ∃L < ∞

∥g(x)− g(x′)∥ ≤ L∥x− x′∥, ∀x, x′ ∈ D

• Theorem [Existence & Uniqueness] Nonlinear ODE

ẋ(t) = f(x(t), t), I.C. x(t0) = x0

has a unique solution if f(x, t) is Lipschitz in x and piecewise continuous in t
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Existence and Uniqueness of Linear Systems

• Corollary: Linear system

ẋ(t) = Ax(t) +Bu(t)

has a unique solution for any piecewise continuous input u(t)

• Homework: Suppose A becomes time-varying A(t), can you derive conditions
to ensure existence and uniqueness of ẋ(t) = A(t)x(t) +Bu(t)?
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Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations

Matrix Exponential Advanced Control for Robotics Wei Zhang (SUSTech) 8 / 19



How to Solve Linear Differential Equations?

• General linear ODE: ẋ(t) = Ax(t) + d(t)

• The key is to derive solutions to the autonomous linear case: ẋ(t) = Ax(t),
with x(t) ∈ Rn, A ∈ Rn×n, and initial condition (IC) x(0) = x0.

• By existence and uniqueness theorem, the ODE ẋ = Ax admits a unique
solution.

• It turns out that the solution can be found analytically via the Matrix
Exponential
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What is the ”Euler’s Number” e?

• Consider a scalar linear system: z(t) ∈ R and a ∈ R is a constant

ż(t) = az(t), with initial condition z(0) = z0 (1)

• The above ODE has a unique solution:

• What is the number “e”?
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Complex Exponential

• For real variable x ∈ R, Taylor series expansion for ex around x = 0:

ex =

∞∑
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xk

k!
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• This can be extended to complex variables:
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This power series is well defined for all z ∈ C

• In particular, we have ejθ = 1 + jθ − θ2

2 − j θ
3

3! + · · ·

• Comparing with Taylor expansions for cos(θ) and sin(θ) leads to the Euler’s
Formula
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Matrix Exponential Definition

• Similar to the real and complex cases, we can define the so-called matrix
exponential

eA ≜
∞∑

k=0

Ak

k!
= I +A+
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2!
+
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3!
+ · · ·

• This power series is well defined for any finite square matrix A ∈ Rn×n.
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Some Important Properties of Matrix Exponential

• AeA = eAA

• eAeB = eA+B if AB = BA

• If A = PDP−1, then eA = PeDP−1

• For every t, τ ∈ R, eAteAτ = eA(t+τ)

• (eA
)−1

= e−A
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Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations
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Autonomous Linear Systems

ẋ(t) = Ax(t), with initial condition x(0) = x0 (2)

• x(t) ∈ Rn, A ∈ Rn×n is constant matrix, x0 ∈ Rn is given.

• With the definition of matrix exponential, we can show that the solution
to (2) is given by

x(t) = eAtx0
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Computation of Matrix Exponential (1/2)

• Directly from definition

• For diagonalizable matrix:
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Computation of Matrix Exponential (2/2)
• Using Laplace transform
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Solution to General Linear Systems

{
ẋ(t) = Ax(t) +Bu(t), with x(0) = x0

y(t) = Cx(t) +Du(t)
(3)

• x ∈ Rn is system state, u ∈ Rm is control input, y ∈ Rp is the system output

• A,B,C,D are constant matrices with appropriate dimensions

• Homework: The solution to the linear system (3) is given by

{
x(t) = eAtx0 +

∫ t
0
eA(t−τ)Bu(τ)dτ

y(t) = CeAtx0 + C
∫ t
0
eA(t−τ)Bu(τ)dτ +Du(t)
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More Discussions
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