MEE5114 Advanced Control for Robotics

Lecture 4: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang

SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

• Exponential Coordinate of SO(3)

• Euler Angles and Euler-Like Parameterizations

ullet Exponential Coordinate of SO(3)

• Euler Angles and Euler-Like Parameterizations

Towards Exponential Coordinate of SO(3)

- Recall the polar coordinate system of the complex plane:
 - Every complex number $z = x + jy = \rho e^{j\phi}$
 - Cartesian coordinate $(x,y) \leftrightarrow \text{polar coorindate } (\rho,\phi)$
 - For some applications, polar coordinate is preferred due to its geometric meaning.
- Consider a set $M = \{(t, \sin(2n\pi t)) : t \in (0, 1), n = 1, 2, 3, \ldots\}$

Exponential Coordinate of SO(3)

- **Proposition** [Exponential Coordinate ↔ SO(3)]
 - For any unit vector $[\hat{\omega}] \in so(3)$ and any $\theta \in \mathbb{R}$,

$$e^{[\hat{\omega}]\theta} \in SO(3)$$

- For any $R \in SO(3)$, there exists $\hat{\omega} \in \mathbb{R}^3$ with $\|\hat{\omega}\| = 1$ and $\theta \in \mathbb{R}$ such that

$$R = e^{[\hat{\omega}]\theta}$$

exp:
$$[\hat{\omega}]\theta \in so(3) \rightarrow R \in SO(3)$$

$$\log: \quad R \in SO(3) \quad \rightarrow \quad [\hat{\omega}]\theta \in so(3)$$

- The vector $\hat{\omega}\theta$ is called the *exponential coordinate* for R
- \bullet The exponential coordinates are also called the canonical coordinates of the rotation group SO(3)

Rotation Matrix as Forward Exponential Map

• Exponential Map: By definition

$$e^{[\omega]\theta} = I + \theta[\omega] + \frac{\theta^2}{2!}[\omega]^2 + \frac{\theta^3}{3!}[\omega]^3 + \cdots$$

• Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in so(3)$, we have

$$e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin(\theta) + [\hat{\omega}]^2(1 - \cos(\theta))$$

Examples of Forward Exponential Map

• Rotation matrix $R_x(\theta)$ (corresponding to $\hat{x}\theta$)

 \bullet Rotation matrix corresponding to $(1,0,1)^T$

Logarithm of Rotations

• If R=I, then $\theta=0$ and $\hat{\omega}$ is undefined.

• If $\mathrm{tr}(R) = -1$, then $\theta = \pi$ and set $\hat{\omega}$ equal to one of the following

$$\frac{1}{\sqrt{2(1+r_{33})}} \left[\begin{array}{c} r_{13} \\ r_{23} \\ 1+r_{33} \end{array} \right], \frac{1}{\sqrt{2(1+r_{22})}} \left[\begin{array}{c} r_{12} \\ 1+r_{22} \\ r_{32} \end{array} \right], \frac{1}{\sqrt{2(1+r_{11})}} \left[\begin{array}{c} 1+r_{11} \\ r_{21} \\ r_{31} \end{array} \right]$$

• Otherwise, $\theta=\cos^{-1}\left(\frac{1}{2}(\operatorname{tr}(R)-1)\right)\in[0,\pi)$ and $[\hat{\omega}]=\frac{1}{2\sin(\theta)}(R-R^T)$

• Exponential Coordinate of SO(3)

• Euler Angles and Euler-Like Parameterizations

Euler Angle Representation of Rotation

- A common method of specifying a rotation matrix is through three independent quantities called **Euler Angles**.
- Euler angle representation
 - Initially, frame {0} coincides with frame {1}
 - Rotate $\{1\}$ about \hat{z}_0 by an angle α , then rotate about \hat{y}_a axis by β , and then rotate about the \hat{z}_b axis by γ . This yields a net orientation ${}^{0}\!R_1(\alpha,\beta,\gamma)$ parameterized by the ZYZ angles (α,β,γ)
 - ${}^{\scriptscriptstyle{0}}R_1(\alpha,\beta,\gamma) = R_z(\alpha)R_y(\beta)R_z(\gamma)$

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
 - ZYX Euler angles: also called Fick angles or yaw, pitch and roll angles
 - YZX Euler angles (Helmholtz angles)

• Exponential Coordinate of SO(3)

• Euler Angles and Euler-Like Parameterizations

Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1 [Exponential Map of se(3)]: For any $\mathcal{V}=(\omega,v)$ and $\theta\in\mathbb{R}$, we have $e^{[\mathcal{V}]\theta}\in SE(3)$

- Case 1 ($\omega = 0$): $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$
- Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$e^{[\mathcal{V}]\theta} = \left[\begin{array}{cc} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{array} \right], \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2 \quad \text{(1)}$$

Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2 [Log of SE(3)]: Given any $T=(R,p)\in SE(3)$, one can always find twist $\mathcal{S}=(\omega,v)$ and a scalar θ such that

$$e^{[S]\theta} = T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]$$

Matrix Logarithm Algorithm:

- If R=I, then set $\omega=0$, $v=p/\|p\|$, and $\theta=\|p\|$.
- Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is calculated as $v = G^{-1}(\theta)p$, where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2$$

Exponential Coordinates of Rigid Transformation

 \bullet To sum up, screw axis $\mathcal{S}=(\omega,v)$ can be expressed as a normalized twist; its matrix representation is

$$[\mathcal{S}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

- A point started at p(0) at time zero, travel along screw axis $\mathcal S$ at unit speed for time t will end up at $\tilde p(t) = e^{[\mathcal S]t} \tilde p(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $\mathcal{S} = (\omega, v)$ and θ such that $e^{[\mathcal{S}]\theta} = T$.
- We call $\mathcal{S}\theta$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$

More Space

More Space