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Towards Exponential Coordinate of SO(3)

• Recall the polar coordinate system of the complex plane:

- Every complex number z = x+ jy = ρejϕ

- Cartesian coordinate (x, y) ↔ polar coorindate (ρ, ϕ)

- For some applications, polar coordinate is preferred due to its geometric meaning.

• Consider a set M = {(t, sin(2nπt)) : t ∈ (0, 1), n = 1, 2, 3, . . .}
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Exponential Coordinate of SO(3)

• Proposition [Exponential Coordinate ↔ SO(3)]

- For any unit vector [ω̂] ∈ so(3) and any θ ∈ R,

e[ω̂]θ ∈ SO(3)

- For any R ∈ SO(3), there exists ω̂ ∈ R3 with ∥ω̂∥ = 1 and θ ∈ R such that

R = e[ω̂]θ

exp: [ω̂]θ ∈ so(3) → R ∈ SO(3)

log: R ∈ SO(3) → [ω̂]θ ∈ so(3)

• The vector ω̂θ is called the exponential coordinate for R

• The exponential coordinates are also called the canonical coordinates of the
rotation group SO(3)
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Rotation Matrix as Forward Exponential Map

• Exponential Map: By definition

e[ω]θ = I + θ[ω] +
θ2

2!
[ω]2 +

θ3

3!
[ω]3 + · · ·

• Rodrigues’ Formula: Given any unit vector [ω̂] ∈ so(3), we have

e[ω̂]θ = I + [ω̂] sin(θ) + [ω̂]2(1− cos(θ))
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Examples of Forward Exponential Map

• Rotation matrix Rx(θ) (corresponding to x̂θ)

• Rotation matrix corresponding to (1, 0, 1)T
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Logarithm of Rotations

• If R = I, then θ = 0 and ω̂ is undefined.

• If tr(R) = −1, then θ = π and set ω̂ equal to one of the following

1√
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r23
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1√
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• Otherwise, θ = cos−1
(
1
2 (tr(R)− 1)

)
∈ [0, π) and [ω̂] = 1

2 sin(θ) (R−RT )
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Euler Angle Representation of RotationPARAMETERIZATIONS OF ROTATIONS 47
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Fig. 2.11 Euler angle representation.

degrees-of-freedom and thus at most three quantities are required to specify its
orientation. This can be easily seen by examining the constraints that govern
the matrices in SO(3):

∑

i

r2ij = 1, j ∈ {1, 2, 3} (2.25)

r1ir1j + r2ir2j + r3ir3j = 0, i 6= j (2.26)

Equation (2.25) follows from the fact the the columns of a rotation matrix
are unit vectors, and Equation (2.26) follows from the fact that columns of a
rotation matrix are mutually orthogonal. Together, these constraints define six
independent equations with nine unknowns, which implies that there are three
free variables.

In this section we derive three ways in which an arbitrary rotation can be
represented using only three independent quantities: the Euler Angle repre-
sentation, the roll-pitch-yaw representation, and the axis/angle representa-
tion.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three independent
quantities is to use the so-called Euler Angles. Consider the fixed coordinate
frame o0x0y0z0 and the rotated frame o1x1y1z1 shown in Figure 2.11. We can
specify the orientation of the frame o1x1y1z1 relative to the frame o0x0y0z0 by
three angles (φ, θ, ψ), known as Euler Angles, and obtained by three successive
rotations as follows: First rotate about the z-axis by the angle φ. Next rotate
about the current y-axis by the angle θ. Finally rotate about the current z-axis
by the angle ψ. In Figure 2.11, frame oaxayaza represents the new coordinate
frame after the rotation by φ, frame obxbybzb represents the new coordinate
frame after the rotation by θ, and frame o1x1y1z1 represents the final frame,
after the rotation by ψ. Frames oaxayaza and obxbybzb are shown in the figure
only to help you visualize the rotations.

• A common method of specifying a rotation matrix is through three
independent quantities called Euler Angles.

• Euler angle representation

- Initially, frame {0} coincides with frame {1}

- Rotate {1} about ẑ0 by an angle α, then rotate about ŷa axis by β, and then
rotate about the ẑb axis by γ. This yields a net orientation 0R1(α, β, γ)
parameterized by the ZYZ angles (α, β, γ)

- 0R1(α, β, γ) = Rz(α)Ry(β)Rz(γ)
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Other Euler-Like Parameterizations

• Other types of Euler angle parameterization can be devised using different
ordered sets of rotation axes

• Common choices include:

- ZYX Euler angles: also called Fick angles or yaw, pitch and roll angles

- YZX Euler angles (Helmholtz angles)
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Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1 [Exponential Map of se(3)]: For any V = (ω, v) and θ ∈ R, we
have e[V]θ ∈ SE(3)

• Case 1 (ω = 0): e[V]θ =

[
I vθ
0 1

]

• Case 2 (ω ̸= 0): without loss of generality assume ∥ω∥ = 1. Then

e[V]θ =

[
e[ω]θ G(θ)v
0 1

]
, with G(θ) = Iθ + (1− cos(θ))[ω] + (θ − sin(θ))[ω]2 (1)
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Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2 [Log of SE(3)]: Given any T = (R, p) ∈ SE(3), one can always find
twist S = (ω, v) and a scalar θ such that

e[S]θ = T =

[
R p
0 1

]

Matrix Logarithm Algorithm:
• If R = I, then set ω = 0, v = p/∥p∥, and θ = ∥p∥.
• Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is

calculated as v = G−1(θ)p, where

G−1(θ) =
1

θ
I − 1

2
[ω] +

(
1

θ
− 1

2
cos

θ

2

)
[ω]2
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Exponential Coordinates of Rigid Transformation

• To sum up, screw axis S = (ω, v) can be expressed as a normalized twist; its
matrix representation is

[S] =
[

[ω] v
0 0

]
∈ se(3)

• A point started at p(0) at time zero, travel along screw axis S at unit speed
for time t will end up at p̃(t) = e[S]tp̃(0)

• Given S we can use Theorem 1 to compute e[S]t ∈ SE(3);

• Given T ∈ SE(3), we can use Theorem 2 to find S = (ω, v) and θ such that
e[S]θ = T .

• We call Sθ the Exponential Coordinate of the homogeneous transformation
T ∈ SE(3)
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