MEE5114 Advanced Control for Robotics
 Lecture 4: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang
SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

Outline

- Exponential Coordinate of $S O(3)$
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Outline

- Exponential Coordinate of $S O(3)$
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Towards Exponential Coordinate of $S O(3)$

- Recall the polar coordinate system of the complex plane:
- Every complex number $z=x+j y=\rho e^{j \phi}$
- Cartesian coordinate $(x, y) \leftrightarrow$ polar coorindate (ρ, ϕ)
- For some applications, polar coordinate is preferred due to its geometric meaning.
- Consider a set $M=\{(t, \sin (2 n \pi t)): t \in(0,1), n=1,2,3, \ldots\}$

Exponential Coordinate of $S O(3)$

- Proposition [Exponential Coordinate $\leftrightarrow \mathrm{SO}(3)$]
- For any unit vector $[\hat{\omega}] \in \operatorname{so}(3)$ and any $\theta \in \mathbb{R}$,

$$
e^{[\hat{\omega}] \theta} \in S O(3)
$$

- For any $R \in S O(3)$, there exists $\hat{\omega} \in \mathbb{R}^{3}$ with $\|\hat{\omega}\|=1$ and $\theta \in \mathbb{R}$ such that

$$
R=e^{[\hat{\omega}] \theta}
$$

$$
\begin{array}{lll}
\text { exp: } & {[\hat{\omega}] \theta \in \operatorname{so}(3)} & \rightarrow \\
\text { log: } & R \in S O(3) \quad \rightarrow \quad[\hat{\omega}] \theta \in \operatorname{so}(3)
\end{array}
$$

- The vector $\hat{\omega} \theta$ is called the exponential coordinate for R
- The exponential coordinates are also called the canonical coordinates of the rotation group $S O(3)$

Rotation Matrix as Forward Exponential Map

- Exponential Map: By definition

$$
e^{[\omega] \theta}=I+\theta[\omega]+\frac{\theta^{2}}{2!}[\omega]^{2}+\frac{\theta^{3}}{3!}[\omega]^{3}+\cdots
$$

- Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in s o(3)$, we have

$$
e^{[\hat{\omega}] \theta}=I+[\hat{\omega}] \sin (\theta)+[\hat{\omega}]^{2}(1-\cos (\theta))
$$

Examples of Forward Exponential Map

- Rotation matrix $R_{x}(\theta)$ (corresponding to $\hat{x} \theta$)
- Rotation matrix corresponding to $(1,0,1)^{T}$

Logarithm of Rotations

- If $R=I$, then $\theta=0$ and $\hat{\omega}$ is undefined.
- If $\operatorname{tr}(R)=-1$, then $\theta=\pi$ and set $\hat{\omega}$ equal to one of the following

$$
\frac{1}{\sqrt{2\left(1+r_{33}\right)}}\left[\begin{array}{c}
r_{13} \\
r_{23} \\
1+r_{33}
\end{array}\right], \frac{1}{\sqrt{2\left(1+r_{22}\right)}}\left[\begin{array}{c}
r_{12} \\
1+r_{22} \\
r_{32}
\end{array}\right], \frac{1}{\sqrt{2\left(1+r_{11}\right)}}\left[\begin{array}{c}
1+r_{11} \\
r_{21} \\
r_{31}
\end{array}\right]
$$

- Otherwise, $\theta=\cos ^{-1}\left(\frac{1}{2}(\operatorname{tr}(R)-1)\right) \in[0, \pi)$ and $[\hat{\omega}]=\frac{1}{2 \sin (\theta)}\left(R-R^{T}\right)$

Outline

- Exponential Coordinate of $S O(3)$
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Euler Angle Representation of Rotation

- A common method of specifying a rotation matrix is through three independent quantities called Euler Angles.
- Euler angle representation
- Initially, frame $\{0\}$ coincides with frame $\{1\}$
- Rotate $\{1\}$ about \hat{z}_{0} by an angle α, then rotate about \hat{y}_{a} axis by β, and then rotate about the $\hat{\mathrm{z}}_{\mathrm{b}}$ axis by γ. This yields a net orientation ${ }^{0} R_{1}(\alpha, \beta, \gamma)$ parameterized by the ZYZ angles (α, β, γ)
- ${ }^{0} R_{1}(\alpha, \beta, \gamma)=R_{z}(\alpha) R_{y}(\beta) R_{z}(\gamma)$

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
- ZYX Euler angles: also called Fick angles or yaw, pitch and roll angles
- YZX Euler angles (Helmholtz angles)

Outline

- Exponential Coordinate of $S O(3)$
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Exponential Map of $s e(3)$: From Twist to Rigid Motion

Theorem 1 [Exponential Map of $s e(3)$]: For any $\mathcal{V}=(\omega, v)$ and $\theta \in \mathbb{R}$, we have $e^{[\mathcal{V}] \theta} \in S E(3)$

- Case $1(\omega=0): e^{[\mathcal{V}] \theta}=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right]$
- Case $2(\omega \neq 0)$: without loss of generality assume $\|\omega\|=1$. Then

$$
e^{[\mathcal{V}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & G(\theta) v \tag{1}\\
0 & 1
\end{array}\right], \text { with } G(\theta)=I \theta+(1-\cos (\theta))[\omega]+(\theta-\sin (\theta))[\omega]^{2}
$$

Log of $S E(3)$: from Rigid-Body Motion to Twist

Theorem 2 [\log of $S E(3)$]: Given any $T=(R, p) \in S E(3)$, one can always find twist $\mathcal{S}=(\omega, v)$ and a scalar θ such that

$$
e^{[\mathcal{S}] \theta}=T=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

Matrix Logarithm Algorithm:

- If $R=I$, then set $\omega=0, v=p /\|p\|$, and $\theta=\|p\|$.
- Otherwise, use matrix logarithm on $S O(3)$ to determine ω and θ from R. Then v is calculated as $v=G^{-1}(\theta) p$, where

$$
G^{-1}(\theta)=\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cos \frac{\theta}{2}\right)[\omega]^{2}
$$

Exponential Coordinates of Rigid Transformation

- To sum up, screw axis $\mathcal{S}=(\omega, v)$ can be expressed as a normalized twist; its matrix representation is

$$
[\mathcal{S}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \operatorname{se}(3)
$$

- A point started at $p(0)$ at time zero, travel along screw axis \mathcal{S} at unit speed for time t will end up at $\tilde{p}(t)=e^{[\mathcal{S}] t} \tilde{p}(0)$
- Given \mathcal{S} we can use Theorem 1 to compute $e^{[\mathcal{S}] t} \in S E(3)$;
- Given $T \in S E(3)$, we can use Theorem 2 to find $\mathcal{S}=(\omega, v)$ and θ such that $e^{[\mathcal{S}] \theta}=T$.
- We call $\mathcal{S} \theta$ the Exponential Coordinate of the homogeneous transformation $T \in S E(3)$

More Space

More Space

