# MEE5114 Advanced Control for Robotics <br> Lecture 2: Rigid Body Configuration and Velocity 

Prof. Wei Zhang

SUSTech Insitute of Robotics<br>Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

## Outline

- Rigid Body Configuration
- Rigid Body Velocity (Twist)
- Geometric Aspect of Twist: Screw Motion

Free Vector

- Free Vector: geometric quantity with length and direction

- Given a reference frame, $v$ can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector $v$ can be represented by its coordinates $v$ in the reference frame.

- $v$ denotes the physical quantity while ${ }^{A} v$ denote its coordinate wry frame $\{\mathrm{A}\}$.

Frame: coordinate sys based on basis vectors
$\{A\}$-frame: $\left\{\begin{array}{l:l} & \left.\hat{x}_{A}, \hat{y}_{A}, \hat{z}_{A}\right\},\left\{_{A}\right\} ;\end{array}{ }^{A} V=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right.$ means

$$
\left.{ }^{A} \hat{X}_{A}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad B^{3} \hat{x}_{A} \quad \right\rvert\, \quad v=1 \cdot \hat{x}_{A}+2 \cdot \hat{y}_{A}+3 \hat{z_{A}}
$$

Point

$V_{3}=V_{1}+V_{2} \leqslant$ "coordinate - free". Bn we can express "physics"

- Point: $p$ denotes a point in the physical space
- $\quad 1$
in different coordinate frames.
choose $A:$
chose B

$$
A V_{3}={ }^{A} V_{1}+A V_{2} V_{3}={ }^{B} V_{1}+{ }^{B} V_{2}
$$

- A point $p$ can be represented by a vector from frame origin to $p$

$$
A V_{3} \notin V_{1}+B V_{2}
$$

- ${ }^{A} p$ denotes the coordinate of a point $p$ wit frame $\{\mathrm{A}\}$

$$
A P=(0, P)
$$



$$
B_{B P}=\left(\overrightarrow{O_{B} P}\right) \quad \overrightarrow{O_{B} P} \neq \overrightarrow{O_{A} P}
$$

- When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from the context.

$$
A\left(\overrightarrow{O_{B} P}\right)
$$

## Cross Product

- Cross product or vector product of $a \in \mathbb{R}^{3}, b \in \mathbb{R}^{3}$ is defined as

$$
\begin{aligned}
& \in \mathbb{R}^{3} \in \mathbb{R}^{3}=\left[\frac{a_{2} b_{3}-a_{3} b_{2}}{a_{3} b_{1}-a_{1} b_{3}}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right. \\
& a=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

Properties:

- $\|a \times b\|=\|a\|\|b\| \sin (\theta)$
- $a \times b=-b \times a$
- $a \times a=0$


## Skew symmetric representation

- It can be directly verified from definition that $a \times \underline{b}=[a] b$, where

$$
[a] \triangleq\left[\begin{array}{ccc}
0 & -a_{3} & a_{2}  \tag{2}\\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

- $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]^{\rightarrow} \leftrightarrow[a] \quad \begin{aligned} & \text { symmetric: } \quad A=A^{\top} \\ & \text { skew symmetric: } A=-A^{\top}\end{aligned}$
- $[a]=-[a]^{T}$ (called skew symmetric)
- $[a][b]-[b][a]=[a \times b]$ (Jacobi's identity)


## Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin 0
- $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal
$-\hat{x} \times \hat{y}=\hat{z} \Leftarrow$ right hand rule
- Rotation Matrix: specifies orientation of one frame relative to another


Special Orthogonal Group $\quad R \in S O(3)$

- Special Orthogonal Group:' Space of Rotation Matrices in $\mathbb{R}^{n}$ is defined as prove

$$
\leftrightarrow S O(n)=\left\{R \in \mathbb{R}^{n \times n}: R^{T} R=I, \operatorname{det}(R)=1\right.
$$

- $S O(n)$ is a group. We are primarily interested in $S O(3)$ and $S O(2)$, rotation groups of $\mathbb{R}^{3}$ and $\mathbb{R}^{2}$, respectively.
- Group is a set $G$, together with an operation •, satisfying the following
group axioms:
$(\mathbb{Z},+)$, clock arithmetic.
 where $e$ is the identity element.
geometry: Study of "symmetry:

$$
\begin{aligned}
& \operatorname{inv}(2)=2 \\
& \ln u(s)=1
\end{aligned}
$$

Use of Rotation Matrix (1/2) directly -from definition

- Representing an orientation ${ }^{A} R_{B} \overparen{\text { Orientation of }\{B\} \text { relative to } A}$
- Changing the reference frame ${ }^{A} R_{B}$ : Given vector $v$, its coordinates in $\{A\},\{B\}$ are $A_{V},{ }_{V}$
. ${ }^{A} V={ }^{A} R_{B}{ }^{B} V:$ proof: "Coordinat e-free"
- we have only one rector: $V$, suppose $f V=\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right], \quad B=\left[\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{2}\end{array}\right]$
"physics": $\quad V=\alpha_{1} \hat{x}_{+}+\alpha_{2} \hat{y}_{2}+\alpha_{3} \hat{z}_{A}$


$$
\begin{aligned}
& V=\underline{\beta_{1} \hat{x}_{8}+\beta_{2} \hat{y}_{B}+\beta_{3} \hat{z}_{B}} \\
\Rightarrow \quad & \alpha_{1} \hat{y}_{A}+\alpha_{2} \hat{y}_{3}+\alpha_{3} \hat{z}_{A}=\beta_{1} \hat{x}_{B}+\beta_{2} \hat{y}_{B}+\beta_{3} \hat{z}_{b} \ldots \text {.physics: }
\end{aligned}
$$

$\Rightarrow$ state/express physics in \{AS:

$$
\Rightarrow \alpha_{1}^{A} \hat{x}_{A}+\alpha_{2}^{A} \hat{y}_{A}+\alpha_{3}^{A} \hat{z}_{A}=\beta_{1}^{A} \hat{x}_{B}+\beta_{2}^{A} \hat{y}_{B}+\beta_{B}^{A} \hat{z}_{B}
$$

Use of Rotation Matrix (2/2)

$$
\begin{aligned}
& A V=A R_{B}{ }^{Q} V
\end{aligned}
$$

- "Rotating a vector or a frame $\operatorname{Rot}(\hat{\omega}, \theta)$ : will be discussed in next lecture.

$$
\left\{\begin{array}{l}
\text { "action" } \\
\text { verb. }
\end{array}\right.
$$

Rigid Body Configuration
pose

- Given two coordinate frames $\{A\}$ and $\{B\}$, the configuration of $B$ relative to A is determined by


$$
\begin{aligned}
& { }^{H} R_{D}=\left[1+x_{B} 1+y_{B}+z_{b}\right] \\
& { }^{O_{b}}=A\left(\overrightarrow{B_{B} O_{b}}\right)
\end{aligned}
$$

- For a (free) vector " r $\%$ its coordinates ${ }^{A} r$ and ${ }^{B} r$ are related by:

$$
r y A_{\gamma}={ }^{A} R_{B}{ }^{B_{\gamma}}
$$

- For a point $p$, its coordinates ${ }^{A} p$ and ${ }^{B} p$ are related by:
' "coordinate free":

Homogeneous Transformation Matrix

- Homogeneous Transformation Matrix: ${ }^{A} T_{B},\langle\times|$

$$
\begin{aligned}
& { }^{A} T_{B} \triangleq\left[\begin{array}{c:c}
{ }^{A} R_{B} & { }^{4} O_{B} \\
0 & 1
\end{array}\right] \\
& T=(R, p) \text {. pose of a frame \{ps } \\
& \text { relative to }\{A\}
\end{aligned}
$$

- Homogeneous coordinates:

Given a point $p \in \mathbb{R}^{3}$, its homogeneneous coordinate is defined as

$$
\widetilde{\mathcal{P}}=\left[\begin{array}{l}
P \\
1
\end{array}\right] \in \mathbb{R}^{4} \Rightarrow A^{A} \widetilde{\gamma}=A_{B}{ }^{B} \tilde{P}
$$

Given a vector $v \in \mathbb{R}^{3}$, its homo-coord is $\widetilde{v}=\left[\begin{array}{l}v \\ 0\end{array}\right]$

$$
V=p_{1}-p_{2} \quad \tilde{V}_{2} \tilde{p}_{1}-\tilde{P}_{2}=\left[\begin{array}{l}
v \\
0
\end{array}\right], \quad A \tilde{v}=A_{B} B \tilde{V}
$$

Example of Homogeneous Transformation Matrix
Fixed frame $\{a\}$; end effector frame $\{b\}$, the camera frame $\{c\}$, and the workpiece frame $\{d\}$. Suppose

$$
\left\|p_{c}-p_{b}\right\|=4
$$

$$
\begin{aligned}
& \text { 1: Camera "location"? }{ }^{a} T_{c}=\left(a R_{c},{ }^{a} P_{c}\right) \\
& { }^{a} R_{c}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right], \quad a p_{c}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] \\
& { }^{a} T_{c}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
\hdashline 0 & -1 & 1 \\
0 & 0 & 0
\end{array} 1\right]
\end{aligned}
$$



L: end effector frame $\begin{gathered}a T_{b} \\ \\ a T_{b}= \\ \\ \\ a T_{c}{ }^{c} T_{b} \\ \\ \end{gathered}$

## Outline

- Rigid Body Configuration
- Rigid Body Velocity (Twist) spatial vector
- Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/3)

- Consider a rigid body in motion. The body has infinitely many points $\left\{p_{i}\right\}$ with different velocities $\left\{v_{p_{i}}\right\}$


$$
\left.\begin{array}{l}
v_{p_{1}}=g\left(p_{1}, \text { para }\right) \\
v_{p_{2}}=g\left(p_{2},\right. \text { para } \\
v_{p_{3}}=g\left(p_{3},\right.
\end{array}\right\}
$$

parameter common to all points on the body.

- All these velocities $v_{p_{i}}$ 's are not independent
- They can be expressed by the same set of parameter
- Rigid body velocity (ie. spatial velocity, twist) is one such parametrization

Rigid Body Velocity (2/3)

- Pure rotation case:


General motion
$1^{\bullet}$ : Again, assume pe on potation axis./body-fixed.

$$
V_{p_{i}}=\dot{p}_{i}(t)=\left(p_{0}(t)+\vec{p}_{D_{i}}(t)\right)^{\prime}=v_{p_{p}}+\omega \times \vec{p}_{0} \overrightarrow{p_{i}}=g\left(p_{i}, \text { para }\right)
$$

In this case, $p_{0}$ is a reference point we use para to express velocities of all other points.
2 . What if ref point NAT on rotation axis?
eg. consider arbitrary body-fixed $q$, with velocity $v_{q}$

- we still have the same expression $\quad V_{p_{i}}=V_{q}+\omega \times \overrightarrow{q p_{i}}$.- (2)

Why? use $g_{0}$ as intermediate variable.

$$
\begin{aligned}
q \text { is b-dy-fixed, } & \left.\Rightarrow \text { by (1) } \Rightarrow v_{q}=v_{p_{i}}+w \times \overrightarrow{\beta_{q} q=v_{p_{i}}-w \times \overrightarrow{p_{0} p_{i}}} \begin{array}{rl} 
& +w \times p_{p_{i}}
\end{array}\right]=v_{q}+w \times \overrightarrow{q p_{i}}
\end{aligned}
$$

Rigid Body Velocity (3/3)

- 3. Whet if the ref point " $r$ " is NOT body-fixed. (CJ. $r$ is statimany in space, or move in other way,.
- let $q$ he body-fixed point "currently" "coincides" with $n$


$$
\text { i.e. } \left.q(t)=r \text { at time } t \text { ( } q\left(t_{1}\right) \text { may int aquas } r \text { at } t_{1} \neq t\right)
$$

Ry (2): $\left.\quad v_{p_{i}}=v_{q(t)}+w \times q(t)\right)_{2}(t)$
If we define: " $v_{r} " \triangleq V_{q(t)}$, then $v_{p_{i}}=" v_{r} "+w \times r \overrightarrow{p p}_{i}$
$\left\{\begin{array}{l}\text { " } v_{r} \text { ": in reprensentiry rigid boll } B \text { velocity (same as (2) ) }\end{array}\right.$ means the velocity of body-finel point current coincides with $r$. rigid body vetoing,

## Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
- Pick an arbitrary point $r$ (reference point), which may or may not be body-fixed
- Define $v_{r}$ as the velocity of the body-fixed point currently coincides with $r$
- For any body-fixed point $p$ on the body: $v_{p}={ }^{\prime} v_{r}{ }^{\prime \prime}+\omega \times(\overrightarrow{r p})$


- Twist is a "physical" quantity (just like linear or angular velocity)
- It can be represented in any frame for any chosen reference point $r$
- A rigid body with $\mathcal{V}_{r}=\left(\omega\right.$ थ) can be "thought of" as translating at $v_{r}$ while rotating with angular velocity $\omega$ about an axis passing through $r$
- This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

- Given frame $\{\mathrm{A}\}$ and a spatial velocity $(\mathcal{y}$个 convention
- Choose $\cap_{A}$ (the origin of $\{\mathrm{A}\}$ ) as the reference, point to represent the rigid body velocity
- Coordinates of $\mathcal{V}$ in $\{\mathrm{A}\}$ :

- By default, we assume the origin of the fame is used as the reference point:


$$
\left.A^{4}\right)
$$

$$
\left(w, v_{0}\right)
$$

Let $p$ be a body-fixed point of $b>d y$.

Example of Twist I

- Example I: What's the twist of the spinning top?
choose $\{A\}$ - frame:

$$
\begin{aligned}
& \text { close }\{B \text { )- frame } \\
& { }^{B} V_{\text {tap }}=\left[\begin{array}{l}
B \omega \\
B V_{B}
\end{array}\right]=\left[\begin{array}{c}
5_{0}^{0} \\
0 \\
-0_{0} \\
0
\end{array}\right] \\
& \text { Revisit: using } A X_{B}: \quad \rightarrow V_{\text {top }}=A X_{B} V_{\text {top }} \\
& \text { for this example: } \left.A X_{B}=A d_{T}\right]=\left[\begin{array}{cc:ccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
10 & 0 & 0 & 0 \\
\hdashline & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& T=(R, \rho), \quad R=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad P=\left[\begin{array}{cc}
0 \\
0,04 \\
0
\end{array}\right] \rightarrow\left(\left[\begin{array}{lll}
0 & 0 & 0.00 \\
0 & 0 & 0 \\
0,04 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\right)
\end{aligned}
$$



Example of Twist II

- Example II: Whet's ${ }^{b} V_{\text {car }}{ }^{s} V_{\text {car }}$

Car rotate about co $r$ with angular velocity $\omega$

$$
\begin{aligned}
& { }^{b} V_{\text {car }}=\left[\begin{array}{l}
b \\
b v_{0}
\end{array}\right], \quad{ }^{b} \omega=\left[\begin{array}{c}
0 \\
-2 \\
-2
\end{array}\right], \quad{ }^{b} v_{a}={ }^{b} \omega \times \underbrace{b}\left(\vec{r} \vec{P}_{b}\right), \\
& =\left[\begin{array}{c}
0 \\
0 \\
-2 \\
2.8 \\
4 \\
0
\end{array}\right] \\
& { }^{s} V_{\text {car }}=\left[\begin{array}{l}
{ }^{s} \omega \\
\\
S V_{O_{s}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2 \\
?
\end{array}\right] \\
& s_{V_{O_{s}}}=s_{\omega} \times{ }_{s}\left(\overrightarrow{\mathrm{rO}_{s}} \rightarrow-s_{\gamma}\right. \\
& =\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \times\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-4 \\
0
\end{array}\right]
\end{aligned}
$$

Change Reference Frame for Twist (1/2)

- Given a twist $\mathcal{V}$, let ${ }^{A} \mathcal{V}$ and ${ }^{B} \mathcal{V}$ be their coordinates in frames $\{A\}$ and $\{B\}$

$$
{ }^{A} \mathcal{V} \neq\left[\begin{array}{c}
{ }^{A} \omega \\
{ }^{A} v_{A}
\end{array}\right] \quad{ }^{B} \mathcal{V}=\left[\begin{array}{c}
{ }^{B} \omega \\
{ }^{B} v_{B}
\end{array}\right]
$$

- They are related by ${ }^{A} \mathcal{V}={ }^{A} X_{B}{ }^{B} \mathcal{V}$
(1) ${ }^{A} \omega={ }^{A} R_{B}{ }^{B} \omega$
(2)"coordinate-free"

$V_{O_{A}}$ : velocity of body-fixad pt currently coincides with $O_{B} T_{B}=\left[\begin{array}{c:c}{ }^{A} R_{B} & { }^{4} O_{B} \\ \hdashline 0 & 1\end{array}\right]$ $V_{\beta}$ :
$V_{O_{A}}=V O_{B}+\omega \times \overrightarrow{V_{B} O_{A}}$ choose $\{A\}$ frame to
express "physics"

$$
\begin{aligned}
& A^{A} V_{A}=A^{A} V_{O_{B}}+{ }^{A} w x^{A}\left(O_{B} O_{A}\right) \\
& ={ }^{A} R_{B}{ }^{\beta} V_{O_{B}}+R_{R}{ }^{n} \omega \times\left(-{ }^{-} O_{B}\right) \\
& =R_{B}{ }^{B} V_{b}+E O_{B} x\left(R_{B}{ }^{B} \omega\right)
\end{aligned}
$$

Change Reference Frame for Twist (2/2) $\quad \begin{aligned} & \| \\ & {\left[0_{B}\right]}\end{aligned}$ combine (1) and (2):

$$
A V=\left[\begin{array}{c}
{ }^{4} \omega \\
\hdashline A V_{D_{A}}
\end{array}\right]=\underbrace{\left[\begin{array}{ll:}
A_{B} R_{B} & 0 \\
\hdashline{ }^{\left(O_{B} R_{B}\right.} & A_{R_{B}}
\end{array}\right]}_{6 \times 6}\left[\begin{array}{l}
B \omega \\
B V_{B}
\end{array}\right]
$$

$$
=\underbrace{\left[\begin{array}{rr}
O_{B}
\end{array}\right] R_{B}}_{3 \times 6} A^{A} R_{B}] \underbrace{\left[\begin{array}{l}
B_{W} \\
W_{V_{z}}
\end{array}\right]}_{V V}
$$

$\triangleq A_{B}^{6 \times 6} \leftrightarrow$ change of coordinate matrix for twist.

- If configuration $\{\mathrm{B}\}$ in $\{\mathrm{A}\}$ is $T=(R, p)$, then

$$
{ }^{A} X_{B}=\left[\operatorname{Ad}_{T}\right] \triangleq \begin{array}{cc}
R & 0 \\
{[p] R} & R
\end{array} \text { Adjoint operator }
$$

Given $T=(R, \gamma) \underset{\square}{\left[A d_{T}\right]}$


## Example I Revisited

Outline

- Rigid Body Configuration
- Rigid Body Velocity (Twist)
- Geometric Aspect of Twist: Screw Motion
- Recall: linear velocity: $v \in \mathbb{R}^{3} \quad, \quad v=\hat{v}$, (vi).
- angular velocity: $\omega \in \mathbb{R}^{3}, \quad \omega=\omega \dot{\theta} \rightarrow$ scalar speed. Yolirection
- rigid body velocity: $V=\left[\begin{array}{c}w \\ v\end{array}\right]$ not divatiy direction vector $\otimes$ speed


## Screw Motion: Definition

- Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
- $\hat{s}$ : unit vector in the direction of the rotation axis
- $q$ : any point on the rotation axis
- $h$ : screw pitch which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

From Screw Motion to Twist
screw motion is a special rigid body motion

- Consider a rigid body under a screw motion with screw axis $\{\hat{s}, h, q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{\mathrm{A}\}$ with origin $o_{A}$.

"coordinate true": given arbitrary body-fixed point $p$. using $q$ as

$A V=\frac{\text { Screw }^{\text {To }} \text { Twist }}{}(\hat{S}$, h,,$\eta)$


6) 



- Result: given screw axis $\{\hat{s}, h, q\}$ with rotation speed $\dot{\theta}$, the corresponding twist $\mathcal{V}=(\omega, v)$ is given by
-- The result holds as long as all the vectors and the twist are represented in the same reference frame $\operatorname{given}\left(A \hat{S}, h,{ }^{4} q, \dot{\theta}\right) \xrightarrow{\text { qq (x) }} A V$


## From Twist to Screw Motion

- The converse is true as well: given any twist $\mathcal{V}=(\omega, v)$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\dot{\theta}$
- If $\omega=0$, then it is a pure translation $(h=\infty)$

$$
\hat{s}=\frac{v}{\|v\|}, \quad \dot{\theta}=\|v\|, h=\infty, q \text { can be arbitrary }
$$

- If $\omega \neq 0$ :

$$
\begin{aligned}
& \hat{s}=\frac{\omega}{\|\omega\|}, \quad \dot{\theta}=\|\omega\|, \quad q=\frac{\omega \times v}{\|\omega\|^{2}}, \quad h=\frac{\omega^{T} v}{\|\omega\|} \\
& \text { you can plug into the eq (t) to verify the result. } \\
& V=\left[\begin{array}{c}
\omega \\
v
\end{array}\right]=\operatorname{srewtotwirt}(\hat{s}, \dot{\theta}, q, h)
\end{aligned}
$$

Examples: Screw Axis and Twist

- What is the twist that corresponds to rotating about $\hat{z}_{B}$ with $\dot{\theta}=2$ ? choose $S_{A}$ J
- screw axis: $A^{A} \hat{S}={ }^{A}{ }^{A} Z_{B}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],{ }^{A} q=\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \dot{\theta}=2, \quad \underline{h=0} \\
& { }^{A} \omega=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \cdot 2=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
& \text { AS. } \dot{\theta}
\end{aligned}
$$

$$
m_{V_{A}}=0-A^{A} w x^{4} q=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \times\left[\begin{array}{l}
0 \\
l_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
2 l_{1} \\
0 \\
0
\end{array}\right]
$$



- What is the screw axis for twist $\mathcal{V}=(0,2,2,4,0,0)$ ?


## Screw Representation of a Twist

- Recall: an angular velocity vector $\omega$ can be viewed as $\hat{\omega} \dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) Kan be interpreted in terms of a screw axis $\underline{\mathcal{S}}$ and a velocity $\dot{\theta}$ about the screw axis

$$
V=\hat{\delta} \dot{\theta}
$$

- Consider a rigid body motion along a screw axis $\hat{\mathcal{S}}=\{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as
- In this notation, we think of $\hat{\mathcal{S}}$ as the twist associated with a unit speed motion along the screw axis $\{\hat{s}, h, q\}$

$$
\mathcal{V}=\hat{\mathcal{S}} \dot{\theta}
$$

More Discussions

- Linear motion velocity: $v=\|u\| \cdot \hat{v}$ direction
- angular velocity $\quad W=$ 公.
- Rigid body motion: (can be thought of as screw motion)
- screw motion is a special rigid body notion, must has a twist:
- $V=\hat{S} \dot{\theta}$

$$
\left[\begin{array}{c}
\underline{w} \\
v_{q}
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \cdot \dot{\theta} \\
\hat{i} \dot{\theta}) \\
\hat{s}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\hat{s} \\
h \hat{s}
\end{array}\right] \dot{\theta}}_{\text {twist cor }}
$$ twist corresponds to screw $(\hat{s}, h, q)$

knit speed screw motion


$$
\begin{aligned}
& { }^{A} V=\left[\begin{array}{l}
A_{\omega} \\
A_{V_{n}}
\end{array}\right] \quad{ }^{A} \omega=A^{A} \hat{S} \cdot \dot{\theta} \\
& \left.{ }^{A} V_{O_{A}}={ }^{a} V_{q}+{ }^{A} \omega \times{ }^{A}\left(\overrightarrow{q D_{A}}\right)=(h \dot{\theta})^{A} \hat{s}+{ }^{A} \omega\right) \times\left({ }^{A} q\right) \\
& =\left(h^{A \lambda} \hat{s}-\left(\hat{s} \hat{s} x^{A} q\right)\right) \dot{\theta}
\end{aligned}
$$

