MEE5114 Advanced Control for Robotics

Lecture 2: Rigid Body Configuration and Velocity

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Free Vector

• Free Vector: geometric quantity with length and direction

• Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

• v denotes the physical quantity while Av denote its coordinate wrt frame $\{A\}$.

Frame: Coordinate sys based on basis vertors

$$f(A) - frame : \left(\hat{\chi}_{A}, \hat{y}_{A}, \hat{z}_{A}\right), \hat{\gamma}_{A}^{2}$$
, $\hat{\gamma}_{A} = \begin{bmatrix} i \\ 2 \\ 3 \end{bmatrix}$ uneans
 $A\hat{\chi}_{A} = \begin{bmatrix} i \\ 2 \\ 3 \end{bmatrix}$ $i\hat{\chi}_{A}$, $V = I \cdot \hat{\chi}_{A} + 2 \cdot \hat{y}_{A} + 3 \hat{z}_{A}$

Rigid Body Configuration

Cross Product

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$\begin{aligned} \boldsymbol{e}_{\boldsymbol{k}}^{\boldsymbol{k}} \boldsymbol{\hat{k}}^{\boldsymbol{k}} \boldsymbol{\hat{k}} \boldsymbol{\hat{k}} \\ \boldsymbol{a} \times \boldsymbol{b} &= \begin{bmatrix} \underline{a_{2}b_{3} - a_{3}b_{2}} \\ a_{3}b_{1} - a_{1}b_{3} \\ a_{1}b_{2} - a_{2}b_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -\mathbf{a}_{3} & \mathbf{a}_{2} \\ \mathbf{a}_{3} & \mathbf{0} & -\mathbf{a}_{1} \\ \mathbf{a}_{3} & \mathbf{0} & -\mathbf{a}_{1} \\ -\mathbf{a}_{2} & \mathbf{a}_{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix} \quad (1) \\ \mathbf{a} &= \begin{bmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \mathbf{a}_{3} \end{bmatrix} \cdot \mathbf{b} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix} \quad (1) \\ \mathbf{a} \times \mathbf{b} \\ \mathbf{a} \times \mathbf{b} \\ \mathbf{a} \times \mathbf{b} \end{aligned}$$

Properties:

- $||a \times b|| = ||a|| ||b|| \sin(\theta)$
- $a \times b = -b \times a$
- $a \times a = 0$ \checkmark

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$\begin{bmatrix} a \end{bmatrix} \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

$$\bullet \ a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \stackrel{\frown}{\leftrightarrow} \begin{bmatrix} a \end{bmatrix} \qquad \text{symmetric}: \quad \mathbf{A} = \mathbf{A}^{\mathsf{T}} \\ \stackrel{\mathsf{skew}}{=} \operatorname{Symmetric}: \quad \mathbf{A} = -\mathbf{A}^{\mathsf{T}}$$

$$\bullet \ \begin{bmatrix} a \end{bmatrix} = -\begin{bmatrix} a \end{bmatrix}^T \text{ (called skew symmetric)}$$

$$(2)$$

• $[a][b] - [b][a] = [a \times b]$ (Jacobi's identity)

a

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin \hat{v} - $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal
 - $\hat{x} \times \hat{y} = \hat{z}$ (right hand rule
- Rotation Matrix: specifies orientation of one frame relative to another

$$AR_{B} \stackrel{c}{=} \begin{bmatrix} A\hat{x}_{B} & A\hat{y}_{B} & A\hat{z}_{B} \end{bmatrix}$$

$$AR_{B} \stackrel{c}{=} \begin{bmatrix} (050) & 544 & (0) \\ 5160 & (050) & 0 \\ 0 & (0 & 1) \end{bmatrix}$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

$$A \text{ valid rotation matrix } R \text{ valid rotation matrix } R \text{ satisfies: (i) } R^{T}R = I; \text{ (ii) } \det(R) = 1$$

Special Orthogonal Group Resolation

- Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as prove $SO(n) = \{R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1\}$
- SO(n) is a group. We are primarily interested in SO(3) and SO(2), rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- **Group** is a set G, together with an operation \bullet , satisfying the following (Z, +), clock arithmetric. f(z, +), f(z, 1, 2, 3, 3, 4)group axioms: $\begin{array}{c} \text{Given} \\ \text{Given} \\ \text{Associativity:} \quad (a \bullet b) \bullet c = a \bullet (b \bullet c), \quad \forall a, b, c \in G \end{array} \begin{array}{c} \text{Given} \\ \text{Given} \\$ **Identity** element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$. **Inverse element:** For each $a \in G$, there is a $b \in G$ such that $a \bullet b = b \bullet a = e$, where e is the identity element. inv(2)=2 Geometry: Study of symmetry Inu(3)=1

Use of Rotation Matrix (1/2) directly from definition

- Representing an orientation ${}^{A}R_{B}$: prientation of SR3 relative to A
- Changing the reference frame ${}^{A}R_{B}$: Given vector V, its coordinates in EAY, FRS are AV, V . Ay = ARB by : proof: "Goordinate - free" = we have only one vector: v, suppose AV= $\begin{bmatrix} \alpha_i \\ \alpha_2 \end{bmatrix}$ $\mathcal{B}_{\mathcal{V}} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$ "physics": $V = \alpha_1 \hat{\chi}_1 + \alpha_2 \hat{\chi}_2 + \alpha_3 \hat{z}_A$ $V = \beta_1 \hat{x}_0 + \beta_2 \hat{y}_2 + \beta_3 \hat{z}_B$ $=) \quad \alpha_1 \hat{\chi}_1 + \alpha_2 \hat{y}_2 + \alpha_3 \hat{z}_4 = \beta_1 \hat{\chi}_2 + \beta_2 \hat{y}_3 + \beta_3 \hat{z}_6 \dots \hat{y}_{n} + \beta_3 \hat{$ =) state/express grhysics in gAS : =) di Anta + dz ~ ýa + dz ~ 20 = B, Anta + B. Aye + B Aze

Use of Rotation Matrix (2/2)

•

AV = ARBEV

• Rotating a vector or a frame $Rot(\hat{\omega}, \theta)$: will be discussed in next lecture.

Rigid Body Configuration

Rigid Body Configuration

rse • Given two coordinate frames {A} and {B}, the configuration of B relative to A is determined by 15. HRO= [HAKE Inge Inge - ${}^{A}R_{B}$ and ${}^{A}o_{B}$ On Or **{**3} • For a (free) vector r_r its coordinates ${}^{A}r$ and ${}^{B}r$ are related by: °R3 • For a point p, its coordinates ${}^{A}p$ and ${}^{B}p$ are related by: OR coordinate frie : /JBL DAP = DADE + DEP choose fas frame to nivess Opilin 3A1

Homogeneous Transformation Matrix

Homogeneous Transformation Matrix: ^AT_B

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $||p_c - p_b|| = 4$

 $1: Camera ``location'' ? a T_c = (a R_c, a P_c)$

$$\mathbf{A}_{\mathbf{C}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} \end{bmatrix} , \quad \mathbf{M}_{\mathbf{C}} = \begin{bmatrix} -1 \\ \mathbf{1} \\ \mathbf{2} \end{bmatrix}$$

2: end effector frame
$$a_{Tb}$$
 : $c_{Tb} = \begin{bmatrix} 0 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $a_{Tb} = a_{Tc} c_{Tb}$

1

Outline

- Rigid Body Configuration
- Rigid Body Velocity (Twist) spatial voctor
- Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/3)

• Consider a rigid body in motion. The body has infinitely many points $\{p_i\}$ with different velocities $\{v_{p_i}\}$

$$V_{p_{i}} = g(p_{i}, para)$$

$$V_{p_{2}} = g(p_{2}, para)$$

$$V_{p_{2}} = g(p_{2}, para)$$

$$V_{p_{3}} = g(p_{3}, para)$$

- All these velocities v_{p_i} 's are not independent

- They can be expressed by the same set of parameter
- Rigid body velocity (i.e. spatial velocity, twist) is one such parameterization

Rigid Body Velocity (2/3)

• Pure rotation case:
Assume
$$p_1$$
 on the rotation axis.
 $V_{p_1} = \bigcup_{i=1}^{N} (p_1, w)$,
 $V_{p_1} = \bigcup_{i=1}^{N} (p_2, w)$,
General motion
1: Again, assume p_2 on Ortation axis. / body-fixed.
 $V_{p_1} = \dot{p}_1(t) = (p_0(t) + p_1\dot{p}_1(t))' = (V_{p_1} + (W_X, p_2)) = g(p_1, p_{arm})$
In this case, $p_1 > a$ reference point we use para
to express velocities of all other points.
2². What if ref point NDT on retation axis?
Ref. constider arbitrony body-fixed q_1 , with velocity (W_1)
- we stall have the same expression
 $W_{p_1} = V_q + (W_X, p_2) = V_{p_1} - (W_1, p_2)$
 $W_{p_2} = V_q + (W_X, p_2) = V_{p_1} - W_2$

Rigid Body Velocity (Twist)

Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
 - Pick an arbitrary point r (reference point), which may or may not be body-fixed
 - Define v_r as the velocity of the body-fixed point currently coincides with r

- For any body-fixed point p on the body: $v_p = v_r + \omega \times (\overrightarrow{rp})$ \in (coordinate of body' • Spatial Velocity (Twist): $V_r = (\omega, v_r) \in \mathbb{R}^6$

- Twist is a "physical" quantity (just like linear or angular velocity)
 - It can be represented in any frame for any chosen reference point \boldsymbol{r}

• A rigid body with $\mathcal{V}_r = (\omega, v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r

- This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

• Given frame $\{A\}$ and a spatial velocity \mathcal{V}

Convention

• Choose o_A (the origin of {A}) as the reference point to represent the rigid body velocity

- Coordinates of \mathcal{V} in {A}:

 $\underline{{}^{A}\mathcal{V}_{o_{A}}} = ({}^{A}\omega, {}^{A}v_{o_{A}})$ By default, we assume the origin of the frame is used as the reference point: $A \mathcal{V} = A \mathcal{V}_{o_A}$ w, Vo 4)1

Let p be a body-fixed point of body. $V_p = V_0 + W \times Q_p p$ $A_{V_{a}} = A_{V_{a}} + w$

Example of Twist I

W $V_p = V_q + w \times (\overline{qp}) = w \times (\overline{qp})$ G $V_p = V_{o_A} + W \times (O_A p)$ 仏 VOB, W)

Example of Twist II

Rigid Body Velocity (Twist)

Change Reference Frame for Twist (1/2)

• Given a twist \mathcal{V} , let ${}^{A}\mathcal{V}$ and ${}^{B}\mathcal{V}$ be their coordinates in frames {A} and {B}

• They are related by
$${}^{A}\mathcal{V} = {}^{A}\mathcal{W}_{A_{U_{A}}}$$

• They are related by ${}^{A}\mathcal{V} = {}^{A}X_{B}{}^{B}\mathcal{V}$
• ${}^{B}\mathcal{W} = {}^{A}R_{g}{}^{B}\mathcal{W}$
• ${}^{B}\mathcal{W} = {}^{A}R_{g}{}^{B}\mathcal{W} = {}^{$

TAO13 Change Reference Frame for Twist (2/2)AR3 J $= [[\mathcal{O}_{\mathbf{k}}] \mathcal{R}_{\mathbf{k}}$ (Imbine (1) and @ : $A_{\mathcal{V}} = \begin{bmatrix} A_{\mathcal{W}} \\ \vdots \\ A_{\mathcal{V}_{Q_{A}}} \end{bmatrix} = \begin{bmatrix} A_{\mathcal{R}_{B}} & O \\ \vdots \\ A_{\mathcal{V}_{Q_{A}}} \end{bmatrix} \begin{bmatrix} A_{\mathcal{R}_{B}} & O \\ \vdots \\ B_{\mathcal{R}_{B}} & A_{\mathcal{R}_{B}} \end{bmatrix} \begin{bmatrix} B_{\mathcal{W}} \\ B_{\mathcal{V}_{Q_{A}}} \end{bmatrix}$ <> change of coordinate matrix for twist 6×6 • If configuration $\{B\}$ in $\{A\}$ is T = (R, p), then $\begin{array}{ccc} R & 0 \\ [p]R & R \end{array}$ $^{A}X_{B} = \left([\mathrm{Ad}_{T}] \right)$ Adjoint prator Ad-Given T= (R, y)

Example I Revisited

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

.

Screw Motion: Definition

• Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - *h*: **screw pitch** which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

From Screw Motion to Twist

- Consider a rigid body under a screw motion with screw axis $\{\hat{s}, h, q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .

• **Result**: given screw axis $\{\hat{s}, h, q\}$ with rotation speed $\hat{\theta}$, the corresponding twist $\mathcal{V} = (\omega, v)$ is given by

- The result holds as long as all the vectors and the twist are represented in the same reference frame given $(A_5^A, h_7^A, \dot{a}) \xrightarrow{q(x)} M$

Screw Motion

From Twist to Screw Motion

- The converse is true as well: given any twist $\mathcal{V} = (\omega, v)$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\dot{\theta}$
 - If $\omega = 0$, then it is a pure translation $(\underline{h = \infty})$

$$(\hat{s}) = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, \underline{q \text{ can be arbitrary}}$$

- If
$$\omega \neq 0$$
:
 $\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}$
You can plug into the eq. (x) to varify the result.
 $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \text{ srew To Twat}(\hat{s}, \hat{\theta}, q, h)$

Examples: Screw Axis and Twist

• What is the screw axis for twist $\mathcal{V} = (0, 2, 2, 4, 0, 0)$?

Screw Representation of a Twist

- Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) \mathcal{Y}_{can} be interpreted in terms of a screw axis \hat{S} and a velocity $\dot{\theta}$ about the screw axis $\gamma = \hat{S} \hat{\theta}$
- Consider a rigid body motion along a screw axis $\hat{S} = \{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as

- In this notation, we think of
$$\hat{S}$$
 as the twist associated with a unit speed motion along the screw axis $\{\hat{s}, h, q\}$
 $\hat{\varsigma} \leftarrow \hat{\varsigma} (\hat{\varsigma}, h, q), \hat{\varrho} = 1$

 $\mathcal{V} = \hat{\mathcal{S}}\dot{\theta}$

More Discussions
- linear motion velocity:
$$V = ||v|| O$$
 direction
- angular velocity $w = \hat{w} \cdot \hat{o}$ (5.h.q. \hat{o})
- Rigid body motion: (can be thought of as screw motion)
- Rigid body motion is a special rigid body motion, must has
• screw motion is a special rigid body motion, must has
• a twist: $V = Screw To Twist(\hat{s} \cdot h, q, \hat{o}) = Scrw To Twist(\hat{s} \cdot t, \hat{o} \cdot t) \cdot \hat{o}$
($w = \begin{bmatrix} \hat{s} \cdot \hat{o} \\ v_1 \end{bmatrix} = \begin{bmatrix} \hat{s} \cdot \hat{o} \\ h\hat{s} \end{bmatrix} \hat{o}$
• $\mathcal{V} = S\hat{o}$
• $\mathcal{V} = S\hat{o}$
• $\mathcal{V} = S\hat{o}$

given $A \mathcal{V} = \begin{bmatrix} A \mathcal{W} \\ A \mathcal{V}_{A} \end{bmatrix}, \quad A \mathcal{W} = A S \cdot \theta$ $(\dot{\theta})\hat{s}$ $^{A}V_{\theta_{A}} = {}^{A}V_{q} + {}^{A}w \times (\overline{q}V_{A}) = (h\overline{\theta})^{A}\widehat{s} + {}^{A}w \times (-^{A}q)$ $= \left(h^{A}S - \left(s^{A}X^{A}q\right)\right) \theta$