MEE5114 Advanced Control for Robotics
 Lecture 3: Operator View of Rigid-Body Transformation

Prof. Wei Zhang
SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Skew Symmetric Matrices

- Recall that cross product is a special linear transformation.
- For any $\omega \in \mathbb{R}^{n}$, there is a matrix $[\omega] \in \mathbb{R}^{n \times n}$ such that $\omega \times p=[\omega] p$

$$
\omega=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right] \leftrightarrow \underline{[\omega]}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

- Note that $[\omega]=-[\omega]^{T} \leftarrow$ skew symmetric
- $[\omega]$ is called a skew-symmetric matrix representation of the vector ω
- The set of skew-symmetric matrices in: so $(n) \triangleq\left\{S \in \mathbb{R}^{n \times n}: S^{T}=-S\right\}$
- We are interested in case $n=2,3$

$$
{ }^{A} R_{B}=\left[\begin{array}{lll}
n x_{B} & \cdots &]
\end{array}\right]
$$

Rotation matrix $R \in S O(3)$
$\left\{R^{\top} R=I, \operatorname{det}(R)=1\right\}$

Rotation Operation via Differential Equation

- Consider a point initially located at p_{0} at time $t=0$
- Rotate the point with unit angular velocity $\hat{\omega}$. Assuming the rotation axis passing through the origin, the motion is described by

- After $t=\theta$, the point has been rotated by θ degree. Note $p(\theta)=e^{[\hat{\omega}] \theta} p_{0}$
- $\operatorname{Rot}(\hat{\omega}, \theta) \triangleq e^{[\hat{\omega}] \theta}$ an be viewed as a rotation operator that rotates a point about $\hat{\omega}$ through θ degree
coordinate free

Rotation Matrix as a Rotation Operator $(1 / 3)$

 theorem:Every rotation matrix R can be written as $\underset{\sim}{R}=\operatorname{Rot}(\hat{\omega}, \theta) \triangleq e^{[\hat{\omega}] \theta}$, i.e., it represents a rotation operation about $\hat{\omega}$ by θ.
Fact: any matrix of the form $e^{[\hat{\omega} j \theta}$ belongs Sol 3)

$$
\text { proof: }\left(e^{[\hat{\omega}] \theta}\right)^{\top}(\cdot)=I, \quad \Rightarrow\left(e^{[\hat{\omega}] \theta}\right)^{\top}=\left(I+[\hat{\omega}] \theta+\frac{[\hat{c}]^{2} \theta^{2}}{2!}+\cdots\right)^{\top}
$$

- We have seen how to use R to represent frame orientation and change of coordinate between different frames. They are quite different from the operator interpretation of R.

$$
=\sum \frac{\left([\hat{\omega}]^{\top}\right)^{n} \theta^{n}}{n!}=e^{-[\hat{\omega}] \theta}
$$

$$
e^{A} \cdot e^{-A}=I \Rightarrow\left(e^{(\hat{\omega}\rangle \theta}\right)^{\top}(-)=I
$$

- To apply the rotation operation, all the vectors/matrices have to be expressed in the same reference frame (this is clear from Eq (1))

Rotation Matrix as a Rotation Operator $(2 / 3)$

- For example, assume $R \stackrel{(}{=}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]=\operatorname{Rot}(\hat{\mathrm{x}} ; \pi / 2)$
- Consider a relation $q=R p$:

Change reference frame interpretation: the frames $\{A\},\{B\}$, one physical
$-R$; orientation of $\{B\}$ relative to $\{A\}$, ie. $R={ }^{A} R_{B}$ point a

- then, p, q are coordinates of the same point a in $\{B\},\{A\}$, respectively. $p={ }^{B} a, q={ }^{A} a \quad q=k p \Leftrightarrow{ }^{A} a={ }^{A} R_{B} B_{a}$
- Rotation operator interpretation:

Have one frame\{AS, and two points $a \xrightarrow{\operatorname{Rot}(?)} a^{\prime}, p={ }^{A} a, q==^{4} a^{\prime}$

$$
{ }^{A} a^{\prime}=R \quad{ }^{A} a
$$

Rotation Matrix as a Rotation Operator (3/3)

- Consider the frame operation:
- Change of reference frame: $R_{B}=R R_{A}$
- Have "one frame object"
- Frame object $\{A\}$, orientation in $\{0\}$,

$$
{ }^{0} R_{A}={ }^{0} R_{B}{ }^{B} R_{A}
$$

- Rotating a frame: $R_{A}^{\prime}=R R_{A}$
- two frames , bjects
- one refrence frame. 03

\[

\]

$$
8
$$

orientation of $\{A\}$

${ }^{6} R_{A}, \quad \operatorname{in}\{B\},{ }^{B} R_{A}$

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Rotation Matrix Properties

- $R^{T} R=I \leftarrow$ definition
- $R_{1} R_{2} \in S O(3)$, if $\underline{R_{1}}, \underline{R_{2}} \in S O(3)$ product of rotation matrix is also potation matrix
- $\|R p-R q\|=\|p-q\| \leftarrow$ rotation operator preserves distance

$$
\|R-q\| \in \text { rotation }\|R p\|=\|R(p-q)\|^{2}=(p-q)^{\top} \underbrace{R^{\top} R}_{I}(p-q)=\|p-q\|
$$

- $R(v \times w)=(R v) \times(R w)<$ rotation preserves orientation
- $\underbrace{R[w] R^{T}=[R w]}_{\Downarrow}$ 刘

Rotation Operator in Different Frames (1/2)

- Consider two frames $\{A\}$ and $\{B\}$, the actual numerical values of the operator $\operatorname{Rot}(\hat{\omega}, \theta)$ depend on both the reference frame to represent $\hat{\omega}$ and the reference frame to represent the operator itself.

- Consider a rotation axis $\hat{\omega}$ (coordinate free vector), with $\{\mathrm{A}\}$-frame coordinate ${ }^{A} \hat{\omega}$ and $\{B\}$-frame coordinate ${ }^{B} \hat{\omega}$. We know

$$
{ }^{A} \hat{\omega}={ }^{A} R_{\beta}{ }^{B} \hat{\omega}
$$

- Let ${ }^{B} \operatorname{Rot}\left({ }^{B} \hat{\omega}, \theta\right)$ and ${ }^{A} \operatorname{Rot}\left({ }^{A} \hat{\omega}, \theta\right)$ be the two rotation matrices, representing the same rotation operation $\operatorname{Rot}(\hat{\omega}, \theta)$ in frames $\{A\}$ and $\{B\}$.

Rotation Operator in Different Frames (2/2)

- We have the relation:

Approach 1: $p \xrightarrow{\text { Rot }(\hat{\omega}, \theta)} p^{\prime} \underset{\{A\}}{\Rightarrow{ }^{\wedge} p^{\prime}=A_{0} R_{0} \beta p}$

$$
\begin{aligned}
& \text { A-frame Rotation: } \\
& { }^{A} R_{0} t=e^{\left[{ }^{n} \hat{\omega}\right] \theta}=e^{\left[{ }^{\hat{A}} R_{B}{ }^{B} \hat{w}\right] \theta} \\
& =e^{{ }^{n} R_{B}[8 \hat{\omega}]{ }^{n} R_{B}^{-1} \theta} \\
& e^{P A P^{-1}}=P e^{A} P^{-1} \\
& \left.={ }^{A} R_{B} e^{[8}{ }^{8}\right]^{\theta}{ }^{1} R_{B}^{-1} \\
& ={ }^{A} R_{B}{ }^{B} R_{0} t{ }^{A} R_{B}{ }^{-1} \\
& \xrightarrow{\{[B] \text {-frame }}{ }^{B} \rho^{\prime}={ }^{B}{ }_{R_{D}+}{ }^{B} P \\
& \Rightarrow \underbrace{A} R_{B}{ }^{\Delta} P^{\prime}={ }^{A} R_{B}{ }^{B} R_{0} t\left(\beta_{D}\right)^{\prime}{ }^{B} R_{A}{ }^{A} p \\
& { }^{A} P^{\prime}={ }^{4} R_{B}{ }^{B} R_{0}+{ }^{\circ} R_{A}{ }^{A} P \\
& \underbrace{R_{0} t={ }^{A} R_{B}{ }^{B} R_{0}+{ }^{B} R_{B}=\left({ }^{B} R_{A}\right)^{-1}}_{\text {similarity }}
\end{aligned}
$$

example: Rotate $\{\{A\}$
about io by $\frac{\pi}{2}$

$A \hat{x}_{A}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \cdot R\left(\Omega_{A}\right):$ frame we are working with

- What wont rotating $\langle A\rangle$ cubout \dot{x}_{4} axis

$$
R_{A^{\prime}}=e^{\left[\hat{x}_{A}\right] \frac{\lambda}{2}} R_{A}
$$

Use $\{3\}$ from to express yilssis:

$$
e^{\left[\operatorname{rin} \hat{x}_{H}\right] \frac{\star}{2}} \triangleq R
$$

$$
{ }^{0} R_{A^{\prime}}={ }^{0} R_{A} R
$$

$$
\begin{aligned}
& { }^{0} R_{f^{\prime}}=e^{\left[\hat{x_{*}}\right] \frac{2}{2}}{ }^{\circ} R_{A} \\
& =\left(e^{\left[{ }^{\left.\hat{} R_{A} \hat{x_{A}}\right] \frac{\pi}{2}}\right.} 0^{0} R_{A}=\left(\begin{array}{lll}
{ }^{0} R_{A} & R^{0} R_{A}^{H}
\end{array}\right){ }^{0} R_{A}\right. \\
& ={ }^{9} R_{A} R \\
& \text { post - multiplication }
\end{aligned}
$$

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Rigid-Body Operation via Differential Equation (1/3)

- Recall: Every $R \in S O(3)$ can be viewed as the state transition matrix associated with the rotation ODE(1). It maps the initial position to the current position (after the rotation motion)
- $p(\theta)=\operatorname{Rot}(\hat{\omega}, \theta) p_{0}$ viewed as a solution to $\dot{p}(t)=[\hat{\omega}] p(t)$ with $p(0)=p_{0}$ at $t=\theta$.
- The above relation requires that the rotation axis passes through the origin.
- We can obtain similar ODE characterization for $T \in S E(3)$, which will lead to exponential coordinate of $S E(3)$

Rigid-Body Operation via Differential Equation (2/3)

- Recall: Theorem (Chases): Every rigid body motion can be realized by a screw motion

- Consider a point p undergoes a screw motion with screw axis \mathcal{S} and unit speed $(\dot{\theta}=1)$. Let the corresponding twist be $\mathcal{V}=\mathcal{S}=(\omega, v)$. The motion can be described by the following ODE. $\quad p(t) \rightarrow \tilde{p}=\left[\begin{array}{c}\eta(t) \\ 1\end{array}\right] \quad \tilde{p}=\left[\begin{array}{c}\dot{p}(t) \\ 0\end{array}\right]$

$$
\begin{align*}
& \dot{p}(t)=\omega \times p(t)+v_{r} \tag{2}\\
& \dot{\rho}(t)=v_{n}+\omega \times \vec{r} \vec{p}(t)
\end{align*}
$$

$$
[\underbrace{\underbrace{\dot{p}(t) ; \mathfrak{k}^{2} \mid}_{0 \rightarrow \mid}}=[\underbrace{[\omega]} \begin{array}{cc}
{[\omega]} \\
0_{-} & 0
\end{array}]\left[\begin{array}{c}
p(t) \\
1
\end{array}\right]
$$

$$
\dot{\tilde{\nu}}(t)=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \cdot \tilde{\mathscr{Y}}(t) \quad \Leftrightarrow \dot{x}=A x
$$

- Solution to (2) in homogeneous coordinate is:

$$
\underset{\sim \sim(t)}{\left[\begin{array}{c}
p(t) \\
1
\end{array}\right]}=\underbrace{\exp \left(\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] t\right)\left[\begin{array}{c}
p(0) \\
1
\end{array}\right]}
$$

Rigid-Body Operation via Differential Equation (3/3)

- For any twist $\mathcal{V}=(\omega, v)$, let $[\mathcal{V}]$ be its matrix representation

$$
\text { rigid body } \underset{\text { spatial velocity }}{\text { 个 }} \quad[\mathcal{V}]=\left[\begin{array}{cc}
\widetilde{\omega \omega}_{\omega]}^{3 \times 3} & C^{3 \times 1} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

?$e^{[s] t}=$

$$
=I+\left[\begin{array}{cc}
{[w]} & v \\
0 & 0
\end{array}\right] t+[]^{2} t^{2}+
$$

$$
(\hat{s}, q, h), \dot{\theta}=1
$$

- The above definition also applies to a screw axis $\mathcal{S}=(\omega, v)$
- With this notation, the solution to (2) is $\tilde{p}(t)=e^{[\mathcal{S}] t} \tilde{p}(0)$
- Fact: $e^{[S S 1 t} \in S E(3)$ is always a valid homogeneous transformation matrix.

$$
e^{[S] t}=\left[\begin{array}{ll}
F & h \\
0 & ,
\end{array}\right], F \in S O(3), \quad h \in \mathbb{R}^{3}
$$

- Fact: Any $T \in S E(3)$ can be written as $T=e^{[\mathcal{S}] t}$, i.e., it can be viewed as an operator that moves a point/frame along the screw axis at unit speed for time t

$$
\begin{array}{ll}
\forall w \in \mathbb{R}^{3}, & {[w] \in S O(3)} \\
\forall S \in \mathbb{R}^{6}, & {[S]=\left[\begin{array}{cc}
(w), & \exp (\cdot) \\
0 & 0
\end{array}\right] \in \operatorname{Se}(3) \xrightarrow{\exp (\cdot)} e^{[w]} \in S O(3)} \\
e^{[S]} \in S E(3)
\end{array}
$$

- Similar to so(3), we can define se(3):

$$
\overparen{s e(3)}=\{(\underbrace{[\omega], v)}:[\omega] \in s o(3), v \in \mathbb{R}^{3}\}
$$

- $s e(3)$ contains all matrix representation of twists or equivalently all twists.
- In some references, $[\mathcal{V}]$ is called a twist.
- Sometimes, we may abuse notation by writing $(\mathcal{V} \in \operatorname{se}(3)$.

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Homogeneous Transformation as Rigid-Body Operator

- ODE for rigid motion under $\mathcal{V}=(\omega, v)$

$$
\dot{p}=(v)+\underline{\omega \times p} \quad \Rightarrow \dot{\tilde{p}}(t)=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \tilde{p}(t) \Rightarrow \tilde{p}(t)=\underline{e^{\left[\mathcal{V} \Theta^{+}\right.} \tilde{p}(0)}
$$

- Consider "unit velocity" $\mathcal{V}=\underline{\mathcal{S}}$, then time $\left(t\right.$ means degree $e^{[S] \theta}$ if not unit speed, $V=S \dot{\theta}$
- $\tilde{p}^{\prime}=T \tilde{p}$: "rotate" p about screw axis \mathcal{S} by θ degree
$\widetilde{\eta^{\prime}}=e^{[S] \theta} \tilde{p}$, using coordinate ss' (o) frame - $\left.\tilde{p}^{\prime}=e^{\left[{ }^{\circ} S\right.}\right] \theta 0 \tilde{\rho}:\left(\right.$ two $p^{\text {pints }}$ one frame)
- $T T_{A}$: "rotate" $\{\mathrm{A}\}$-frame about \mathcal{S} by θ degree

For $T \in S E(3)$

- pose representation $A T_{B}$: pose of $\{B\}$ relative to $\{a s$

$$
{ }^{0} T_{A^{\prime}}={ }^{0} T^{0} T_{A}
$$

$$
\alpha^{*} \tilde{\rho}={ }^{A} T_{B}{ }^{B} \tilde{\rho} \text { : same pint }
$$

Rigid-Body Operator in Different Frames

- Expression of T in another frame (other than $\{\mathrm{O}\}$):

$$
\begin{array}{ccc}
T & \leftrightarrow & T_{B}^{-1} T T_{B} \\
\text { operation in }\{\mathrm{O}\} & & \text { operation in }\{\mathrm{B}\}
\end{array}
$$

Outline

- Rotation Operation via Differential Equation
- Rotation Operation in Different Frames
- Rigid-Body Operation via Differential Equation
- Homogeneous Transformation Matrix as Rigid-Body Operator
- Rigid-Body Operation of Screw Axis

Rigid Operation on Screw Axis

- Consider an arbitrary screw axis \mathcal{S}, suppose the axis has gone through a rigid transformation $T=(R, p)$ and the resulting new screw axis is \mathcal{S}^{\prime}, then

More Space. we also know $T={ }^{\wedge} T_{B} \because\left(\right.$ because: $\left.{ }^{A} T_{B}=T\left(T_{A}\right)\right)$

$$
\begin{aligned}
{ }^{n} T_{B} & =\left[\begin{array}{c:c}
{ }^{4} R_{B} & \tilde{N P O}_{B} \\
0 & 1
\end{array}\right] \\
& =\left[\tilde{\tilde{x}}_{B}, \tilde{\tilde{y}}_{B}, \tilde{\tilde{\tilde{z}}}_{B}, \tilde{\tilde{\tilde{C}}}_{B}\right]
\end{aligned}
$$

Multiply ${ }^{A} X_{B}$ to both sides of (1)

$$
{ }^{A} X_{B}{ }^{A} S={ }^{A} \underbrace{X_{B}^{B} S^{\prime}}={ }^{A} S^{\prime}
$$

screw axis S
rotate about \bar{s} by ${ }^{\theta}$

