MEE5114 Advanced Control for Robotics
 Lecture 5: Instantaneous Velocity of Moving Frames

Prof. Wei Zhang

CLEAR Lab
Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China
https://www.wzhanglab.site/

Outline

- Instantaneous Velocity of Rotating Frames
- Instantaneous Velocity of Moving Frames

Outline

- Instantaneous Velocity of Rotating Frames
- Instantaneous Velocity of Moving Frames

Instantaneous Velocity of Rotating Frame (1/2)

- $\{\mathrm{A}\}$ frame is rotating with orientation $R_{A}(t)$ and velocity $\omega_{A}(t)$ at time t (Note: everything is wrt \{O\}-frame)
- Let $\hat{\omega} \theta=\log \left(R_{A}(t)\right)$ be its exp. coordinate.
- Note: $\hat{\omega} \theta$ means $R_{A}(t)$ can be obtained from the reference frame (say $\{\mathrm{O}\}$-frame) by rotating about $\hat{\omega}$ by θ degree.
- $\hat{\omega} \theta$ only describes the current orientation of $\{\mathrm{A}\}$ relative to $\{\mathrm{O}\}$, it does not contain info about how the frame is rotating at time t.

Instantaneous Velocity of Rotating Frame (2/2)

- What is the relation between $\omega_{A}(t)$ and $R_{A}(t)$?

$$
\frac{d}{d t} R_{A}(t)=\left[\omega_{A}(t)\right] R_{A}(t) \Rightarrow\left[\omega_{A}(t)\right]=\dot{R}_{A}(t) R_{A}^{-1}(t)
$$

Outline

- Instantaneous Velocity of Rotating Frames
- Instantaneous Velocity of Moving Frames

Instantaneous Velocity of Moving Frame (1/2)

- $\{\mathrm{A}\}$ moving frame with configuration $T_{A}(t)$ at time t undergoes a rigid body motion with velocity $\mathcal{V}_{A}(t)=(\omega, v)$ (Note: everything is wrt $\{\mathrm{O}\}$-frame)
- The exponential coordinate $\hat{\mathcal{S}} \theta=\log \left(T_{A}(t)\right)$ only indicates the current configuration of $\{\mathrm{A}\}$, and does not tell us about how the frame is moving at time t.

Instantaneous Velocity of Moving Frame (2/2)

- What is the relation between $\mathcal{V}_{A}(t)$ and $T_{A}(t)$?

$$
\frac{d}{d t} T_{A}(t)=\left[\mathcal{V}_{A}(t)\right] T_{A}(t) \Rightarrow\left[\mathcal{V}_{A}(t)\right]=\dot{T}_{A}(t) T_{A}^{-1}(t)
$$

More Space

