POE

MEE5114 Advanced Control for Robotics

Lecture 6: Product of Exponential and Kinematics of Open Chain

Prof. Wei Zhang

CLEAR Lab
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China
https://www.wzhanglab.site/

Outline

- Motivating Example
- Product of Exponential Formula Derivations
- Practice Example

Kinematics: Robit: Multiple rigid bodies interconnected through joints

Kinematics is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the mass of each or the forces that caused the motion

jose

- Forward Kinematics: calculation of the configuration $T=(R, p)$ of the end-effector frame from joint variables $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$
- Velocity Kinematics (Next Lecture): Deriving the Jacobian matrix: linearized map from the joint velocities θ to the spatial velocity \mathcal{V} of the end-effector

Illustration Example (1/3)

Consider a 2R robot

- Three links and two joints θ_{1}, θ_{2}
- Link/body frame attached to link i at joint i (one of possible choices)
- Fixed/world frame $\{s\}$ frame, end-effector frame $\{b\}$
 Home pose
- Initial pose: $M \triangleq{ }^{s} T_{b}(0,0)$

$$
M={ }^{s} T_{b}(0,0)=\left[\begin{array}{ccccc}
1 & 0 & 0 & L_{1}+L_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & L_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Illustration Example (2/3)

- Fix joint 1 at $\theta_{1}=0$, rotate joint 2 by θ_{2}, we have ${ }^{s} \underbrace{T_{b}\left(0, \theta_{2}\right)}$
- Rigid body motion for Link /body 2 (\{b\}) , ~ r e p r e s e n t e d ~ b y ~ s c r e w ~ m o t i o n ~ with screw axis S_{2}. In coordinate free way.

$$
\begin{aligned}
& \vdots \text { Initial: } M \underset{\theta_{1}=0, \theta_{2}=0}{ } \xrightarrow{\hat{T}=e^{\left[S_{2}\right] \theta_{2}}} \frac{\kappa}{T} M=e^{\left[S_{2}\right] \theta_{2}} M \\
& \vdots \text { In } \begin{array}{c}
\{s]-\text { frame: } s T_{b}\left(0, \theta_{2}\right)=e^{\left[S_{2}\right] \theta_{2}} S_{b}(0,0)
\end{array}
\end{aligned}
$$

- ${ }^{\circ} S_{2}$ is a function of θ_{1}, more precisely, should be written as ${ }^{\circ} S_{2}\left(\theta_{1}\right)$
- For current step $v_{1}=0$, define ${ }^{0} \bar{S}_{2} \triangleq{ }^{\circ} S_{2}(0)$

$$
\begin{aligned}
& -{ }^{\circ} \bar{S}_{2}=\left[\begin{array}{l}
{ }^{\circ} w_{2} \\
0 V_{2}
\end{array}\right], \quad{ }^{0} w_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad{ }^{0} v_{2}=1^{2} \hat{\delta}-{ }^{0} W_{1} \times q_{2}=-\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \times\left[\begin{array}{c}
L_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-L_{1} \\
0
\end{array}\right] \\
& \Rightarrow{ }^{0} \bar{S}_{2}=\left[\begin{array}{c}
0 \\
0 \\
-L_{1}
\end{array}\right]
\end{aligned}
$$

Illustration Example (3/3)

- Fix joint 2 at θ_{2}, and rotate joint 1 by $\theta_{1} \Rightarrow{ }^{s} T_{b}\left(\theta_{1}, \theta_{2}\right)$
- joint 1 screw axis $S_{1}, \quad S_{1}$: independent of $\theta_{1}, \theta_{2},{ }^{\circ} \bar{S}_{1}={ }^{\circ} S_{1}\left(\theta_{1}=0, \theta_{2}=0\right)$

$$
\begin{aligned}
& { }^{0} \bar{S}_{1}=\left[\begin{array}{l}
0 w_{1} \\
0 v_{1}
\end{array}\right], \quad{ }^{0} w_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad{ }^{0} v_{1}=h^{0} \hat{s}_{1}-{ }^{0} \hat{S}_{1} \times 0 q_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& { }^{\circ} \bar{S}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \text { - Initial: } \xrightarrow{s T_{b}\left(0, \theta_{2}\right)} \stackrel{\hat{T}_{1}=e^{\left[\overline{s_{1}}\right] \theta_{1}}}{ }{ }^{s} T_{b}\left(\theta_{1}, \theta_{2}\right)=e^{\left[\overline{S_{1}}\right] \theta_{1}} s T_{b}\left(0, \theta_{2}\right) \\
& \Rightarrow{ }_{S} T_{b}\left(\theta_{1}, \theta_{2}\right)=\underbrace{e^{\left[\bar{S}_{1}\right] \theta_{1}} e^{\left[\bar{S}_{2}\right] \theta_{2}}}_{4 \times 4} M
\end{aligned}
$$

Outline

- Motivating Example
- Product of Exponential Formula Derivations
- Practice Example

Notation Setup (1/2)

- Suppose that the robot has n joints and n links. Each joint has one degree of freedom represented by joint variable $\theta_{i}, i=1, \ldots, n$
- θ_{i} : the joint angle (Revolute joint) or joint displacement (Primatic joint)

\{o\}

- Specify a fixed frame $\{s\}$: also referred to as frame $\{0\}$
- Attach frame $\{i\}$ to link i at joint $\vec{\rightarrow}$, for $i=1, \ldots, n$
- Attach frame $\{b\}$ at the end-effector: sometimes referred to as frame $\{n+1\}$
- $\mathcal{S}_{i} \rightarrow$ constant
- ${ }^{\circ} \mathcal{S}_{i}$: screw axis of joint i expressed in fixed frame $\{0\}$ (ie. frame $\{\mathrm{s}\}$)
${ }^{\circ} S_{i}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{i}\right)$

Notation Setup (2/2)

- For simplicity, we write configuration as T_{s}, which is the same as ${ }^{s} T_{b}$. Similarly, $T_{i j}={ }^{i} T_{j}$
- Note: ${ }^{i} \mathcal{S}_{i}$ does not change when the robot moves (i.e. when θ changes), but ${ }^{0} \mathcal{S}_{i}$ depends on $\theta_{1}, \ldots, \theta_{i}$. Sometimes, we write out the dependency explicitly, i.e. ${ }^{0} \mathcal{S}_{i}\left(\theta_{1}, \ldots, \theta_{i}\right)$
- Define home position: $\theta_{1}=0, \ldots, \theta_{n}=0$. This is the configuration when all the joint angles are zero. One can also choose other fixed angles as the home position constant by definition
- Define ${ }^{0} \overline{\mathcal{S}}_{i}={ }^{0} \mathcal{S}_{i}(0, \ldots, 0)$: the screw axis of joint i expressed in frame $\{0\}$, when the robot is at the home position.

Product of Exponential: Main Idea

$$
s_{T_{b}}\left(\theta_{1}, \theta_{2} \cdot \theta_{1}\right)
$$

- Goal: Derive $T_{s b}\left(\theta_{1}, \ldots, \theta_{n}\right)$ step 0 :
- Compute $M \triangleq T_{s b}(0, \ldots, 0)$: the configuration of end-effector when the robot is at home position Let $\theta_{1}=\theta_{2} \cdots=\theta_{n}=0$

- Apply screw motion to joint $n: T_{s b}\left(0, \ldots, 0, \theta_{n}\right)=e^{\left[0 \overline{\mathcal{S}}_{n}\right] \theta_{n}} M$ this Screw motion $e^{\left[0 S_{n-1}\right] O_{n-1}} \longrightarrow$ does nit changes
- Apply screw motion to joint $n-1$ obtain:

$$
S_{n-1}, S_{n-2}
$$

$$
T_{s b}\left(0, \ldots, 0, \theta_{n-1}^{V}, \theta_{n}\right)=e^{\left[0 \overline{\mathcal{S}}_{n-1}\right] \theta_{n-1}} e^{\left[0 \overline{\mathcal{S}}_{n}\right] \theta_{n}} M
$$

- After n screw motions, the overall forward kinematics:

$$
\left.\right|_{P_{\text {OE }}} ^{T_{s b}\left(\theta_{1}, \ldots, \theta_{n}\right)=e^{[\underbrace{\left[\overline{\mathcal{S}}_{1}\right] \theta_{1}} e^{\left[0 \overline{\mathcal{S}}_{2}\right] \theta_{2}} \cdots e^{\left[0 \overline{\mathcal{S}}_{n}\right] \theta_{n}}} M}
$$

PoE: Screw Motions in Different Order (1/2)

- PoE was obtained by applying screw motions along screw axes ${ }^{\circ} \overline{\mathcal{S}}_{n},{ }^{\circ} \overline{\mathcal{S}}_{n-1}$, What happens if the order is changed?
At got back to first example
Top view

- For simplicity, assume that $n=2$, and let us apply screw motion along ${ }^{\circ} \overline{\mathcal{S}}_{1}$ first:
- $T_{s b}\left(\theta_{1}, 0\right)=e^{\left[0 \overline{\mathcal{S}}_{1}\right] \theta_{1}} M$
- Now screw axis for joint 2 has been changed. The new axis

Initial

$$
{ }^{\circ} \bar{S}_{2} 1 \xrightarrow{\hat{T}_{1}=e^{\left[0 \bar{S}_{1}\right] \theta_{2}}} \underbrace{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ} \theta_{1} \mathscr{S}_{2})=\underbrace{A d_{\hat{T_{1}}}}_{6 \times 1}]^{\circ} \underbrace{\bar{S}_{2}}_{6 \times 1}
$$

PoE: Screw Motions in Different Order (2/2)

$$
-T_{s b}\left(\theta_{1}, \theta_{2}\right)=d^{\left[{ }^{0} \mathcal{S}_{2}\right] \theta_{2}} T_{s b}\left(\theta_{1}, 0\right)
$$

- Recall: $[\underset{\xi \times 1}{R \omega}]=R[\omega] R^{-1}$
$\left[\left[A d_{T}\right] S\right]$

$$
\left[\begin{array}{ll}
(\omega) & v \\
0 & 0
\end{array}\right]
$$

Fact: If $S^{\prime}=\left[A d_{T}\right] S \Leftrightarrow\left[S^{\prime}\right]=T[S] T^{-1}$

- Based on this fact:

$$
\begin{aligned}
& e^{\left[\sigma_{2}\left(\theta_{1}\right)\right] \theta_{2}}=e^{\left[\left[A d \hat{N}_{1}\right] \bar{S}_{2}\right] \theta_{2}}=e^{\hat{T_{1}}\left[\tilde{S}_{2}\right] \hat{T}_{1}^{-1} \theta_{2}} \\
& e^{P A P I} \\
& =\underbrace{\hat{T}_{1} e^{\left[j \overline{s_{2}}\right] \theta_{2}} \hat{T}_{1}^{-1}} \ldots \\
& =p e^{A} \rho^{1}
\end{aligned}
$$

ping in: $s_{T_{b}}\left(\theta_{1}, \theta_{2}\right)=\hat{T}_{1} e^{\left[0 \hat{s}_{2}\right] \theta_{2}} \underbrace{\hat{H^{T}} e^{\left[0 s_{1} \cdot \sigma \theta_{1}\right.}} M$

$$
\begin{aligned}
& \text { Note: }=e^{\left[\bar{S}_{1}\right] \bar{\theta}_{1}} e^{\left[\bar{S}_{1} \bar{s}_{2}\right] \theta_{2}} M \\
& \hat{T_{1}}=e^{\left[\theta_{1}\right.}
\end{aligned}
$$

Outline

- Motivating Example
- Product of Exponential Formula Derivations
- Practice Example

PoE Example: 3R Spatial Open Chain

- Find ${ }^{0} T_{b}\left(\theta_{1}, v_{2}, \theta_{3}\right)$
- Step 1: Initial pose $M=\left[\begin{array}{cccc}0 & 0 & 1 & L_{1} \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_{2} \\ 0 & - & 0 & 1\end{array}\right]$

II

- step 2: $\quad{ }^{\circ} \bar{S}_{1}=\left({ }^{0} w_{1},{ }^{\circ} v_{1}\right),{ }^{0} w_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],{ }^{\circ} v_{1}=0-{ }^{0} w_{1} x^{0} q_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
{ }^{0} \bar{S}_{2} & =\left({ }^{0} w_{2}, 0 V_{2}\right), \quad{ }^{0} w_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \quad \text { pick }{ }^{0} q_{2}=\left[\begin{array}{l}
L_{1} \\
0 \\
0
\end{array}\right], \quad{ }^{0} v_{1}=-\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right] \times\left[\begin{array}{c}
L_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-L_{1}
\end{array}\right] \\
0 \\
0 \\
-L
\end{array}\right], \quad \begin{gathered}
0 \\
1 \\
1
\end{gathered} \quad \bar{S}_{3}=\left({ }^{0} w_{3},{ }^{0} v_{3}\right), \quad{ }^{0} w_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad{ }^{0} q_{3}=\left[\begin{array}{c}
L_{1} \\
0 \\
-L_{2}
\end{array}\right]
$$

More Discussions

$$
0 v_{3}=-w_{3} \times 0 q_{3}=\left[\begin{array}{l}
r \\
\vdots \\
x
\end{array}\right]
$$

$$
\Rightarrow s T_{b}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=e^{\left[\left[\overline{s_{1}}\right] \theta_{1}\right.} e^{\left[\left[\overline{\left.s_{1}\right] \theta_{2}}\right.\right.} e^{\left[0 \bar{s}_{3}\right] \theta_{3}} M
$$

