MEE5114 Advanced Control for Robotics
 Lecture 7: Velocity Kinematics: Geometric and Analytic Jacobian of Open Chain

Prof. Wei Zhang

CLEAR Lab
Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Background
- Geometric Jacobian Derivations
- Analytic Jacobian

Velocity Kinematics

- Velocity Kinematics: How does the velocity of $\{b\}$ relate to the joint velocities $\dot{\theta}_{1}, \ldots, \dot{\theta}_{n}$
- This depends on how to represent $\{b\}$'s velocity
- Twist representation \rightarrow Geometric Jacobian
- Local coordinate of SE(3) \rightarrow Analytic Jacobian

Outline

- Background
- Geometric Jacobian Derivations
- Analytic Jacobian

Simple Illustration Example: Geometric Jacobian (1/2)

Simple Illustration Example: Geometric Jacobian (2/2)

Geometric Jacobian: General Case $(1 / 3)$

- Let $\mathcal{V}=(\omega, v)$ be the end-effector twist (coordinate-free notation), we aim to find $J(\theta)$ such that

$$
\mathcal{V}=J(\theta) \dot{\theta}=J_{1}(\theta) \dot{\theta_{1}}+\cdots+J_{n}(\theta) \dot{\theta}_{n}
$$

- The i th column $J_{i}(\theta)$ is the end-effector velocity when the robot is rotating about \mathcal{S}_{i} at unit speed $\dot{\theta}_{i}=1$ while all other joints do not move (i.e. $\dot{\theta}_{j}=0$ for $j \neq i$).
- Therefore, in coordinate free notation, J_{i} is just the screw axis of joint i :

$$
J_{i}(\theta)=\mathcal{S}_{i}(\theta)
$$

Geometric Jacobian: General Case $(2 / 3)$

- The actual coordinate of \mathcal{S}_{i} depends on θ as well as the reference frame.
- The simplest way to write Jacobian is to use local coordinate:

$$
{ }^{i} J_{i}={ }^{i} S_{i}, \quad i=1, \ldots, n
$$

- In fixed frame $\{0\}$, we have

$$
\begin{equation*}
{ }^{0} J_{i}(\theta)={ }^{0} X_{i}(\theta){ }^{i} S_{i}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

- Recall: ${ }^{\circ} X_{i}$ is the change of coordinate matrix for spatial velocities.
- Assume $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$, then

$$
\begin{equation*}
{ }^{\circ} T_{i}(\theta)=e^{\left[\left[\overline{\mathcal{S}}_{1}\right] \theta_{1}\right.} \cdots e^{\left[0 \overline{\mathcal{S}}_{i}\right] \theta_{i}} M \quad \Rightarrow \quad{ }^{0} X_{i}(\theta)=\left[\operatorname{Ado}_{T_{i}(\theta)}\right] \tag{2}
\end{equation*}
$$

Geometric Jacobian: General Case $(3 / 3)$

- The Jacobian formula (1) with (2) is conceptually simple, but can be cumbersome for calculation. We now derive a recursive Jacobian formula
- Note: ${ }^{\circ} J_{i}(\theta)={ }^{0} S_{i}(\theta)$
- For $i=1,{ }^{9} S_{1}(\theta)={ }^{0} S_{1}(0)={ }^{\circ} \overline{\mathcal{S}}_{1} \quad$ (independent of θ)
- For $i=2,{ }^{9} S_{2}(\theta)={ }^{0} S_{1}\left(\theta_{1}\right)=\left[\operatorname{Ad}_{\hat{T}\left(\theta_{1}\right)}\right]{ }^{0} \overline{\mathcal{S}}_{2}$, where $\hat{T}\left(\theta_{1}\right) \triangleq e^{\left[0 \overline{\mathcal{S}}_{1]}\right] \theta_{1}}$
- For general i, we have

$$
\begin{gather*}
{ }^{0} J_{i}(\theta)={ }^{0} S_{i}(\theta)=\left[\operatorname{Ad}_{\hat{T}\left(\theta_{1}, \ldots, \theta_{i-1}\right)}\right]{ }^{\circ} \overline{\mathcal{S}}_{i} \tag{3}\\
\text { where } \quad \hat{T}\left(\theta_{1}, \ldots, \theta_{i-1}\right) \triangleq e^{\left[\left[\overline{\mathcal{S}}_{1}\right] \theta_{1}\right.} \cdots e^{\left[0 \overline{\mathcal{S}}_{i-1}\right] \theta_{i-1}}
\end{gather*}
$$

Geometric Jacobian Example

Outline

- Background
- Geometric Jacobian Derivations
- Analytic Jacobian

Analytic Jacobian

- Let $x \in \mathbb{R}^{p}$ be the task space variable of interest with desired reference x_{d}
- E.g.: x can be Cartesian + Euler angle of end-effector frame
- $p<6$ is allowed, which means a partial parameterization of $\operatorname{SE}(3)$, e.g. we only care about the position or the orientation of the end-effector frame
- Analytic Jacobian: $\dot{x}=J_{a}(\theta) \dot{\theta}$
- Recall Geometric Jacobian: $\mathcal{V}=\left[\begin{array}{l}\omega \\ v\end{array}\right]=J(\theta) \dot{\theta}$
- They are related by:

$$
J_{a}(\theta)=E(x) J(\theta)=E(\theta) J(\theta)
$$

- $E(x)$ can be easily found with given parameterization x

Simple Illustration Example: Analytic Jacobian (1/3)

Simple Illustration Example: Analytic Jacobian (2/3)

Simple Illustration Example: Analytic Jacobian (3/3)

More Discussions

