MEE5114 Advanced Control for Robotics
 Lecture 1: Linear Differential Equations and Matrix Exponential

Prof. Wei Zhang
SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

Outline

- Linear System Model
- Matrix Exponential
- Solution to Linear Differential Equations

Motivations

- Most engineering systems (including most robotic systems) are modeled by $\xrightarrow{\text { Ordinary Differential (or Difference) Equations (ODEs) / or PDE }}$ $2^{n d}$ orclen
- Example: Dynamics of 2 R robot $\quad \begin{aligned}\tau) & =M(\theta) \ddot{\theta}+\underbrace{c(\theta, \dot{\theta})+g(\theta)}, \leftarrow \text { differential equ in variable } \theta\end{aligned}$
with

$$
\begin{aligned}
& \tau)=M(\theta) \theta+\underbrace{c(\theta, \theta)+g(\theta)}_{h(\theta, \dot{\theta})}, \leftarrow \\
& \text { q. input }
\end{aligned}
$$

$$
\begin{aligned}
M(\theta) & =\left[\begin{array}{cc}
\mathfrak{m}_{1} L_{1}^{2}+\mathfrak{m}_{2}\left(L_{1}^{2}+2 L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) & \mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) \\
\mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right)
\end{array}\right], \\
c(\theta, \dot{\theta}) & =\left[\begin{array}{c}
-\mathfrak{m}_{2} L_{2}^{2} L_{1} L_{2} \sin \theta_{2}\left(2 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right) \\
\mathfrak{m}_{2} L_{1} L_{2} \dot{\theta}_{1}^{2} \sin \theta_{2}
\end{array}\right], \\
g(\theta) & =\left[\begin{array}{c}
\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right) L_{1} g \cos \theta_{1}+\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right],
\end{aligned}
$$

- Screw theory, exponential coordinate, and Product of Exponential (PoE) are based on the (linear) differential equation view of robot kinematics

Linear Differential Equations (Autonomous)

- Linear Differential Equations: ODEs that are linear wot variables egg.:

$$
\text { (1) }\left\{\begin{array}{l}
\dot{x}_{1}(t)+x_{2}(t)=0 \\
\dot{x}_{2}(t)+x_{1}(t)+x_{2}(t)=0
\end{array}\right.
$$

(2) $\left\{\begin{array}{l}\dot{y}(t)+z(t)=0 \\ \dot{z}(t)+y(t)=0\end{array}\right.$

-two coupled 1 | st t -order ODE involve x_{1}, x_{L} | $2^{\text {nd }}$-order $O D E$ in 2 variables Z_{1}, y |
| :--- | :--- |

vector form: $x(t)=\left[\begin{array}{l}x_{1}(t) \\ N_{2}(t)\end{array}\right]$ in $\mid R^{2}$
\Rightarrow Vector state space form:

$$
\dot{x}(t)=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A x
$$

$$
\begin{aligned}
& , x_{1}=y, \quad x_{2}=\dot{y}, \quad x_{3}=8 \\
& 1, \dot{x}(t)=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

- State-space form (1st-order ODE with vector variables): A x
Linear $\quad \dot{x}=A x$

General Linear Control Systems All DDE, cam be written in if Liner: $f(x)=A \cdot x$

- General (Autonomous) Dynamical Systems: $\dot{x}(t)=f(x(t))$
- $x(t) \in \mathbb{R}^{n}$: state vector, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$: vector field
"Autonomous" means " f " depencls only on "x"
state-space form $1^{\text {st }}$ order ODE
- Non-autonomous: $\dot{x}(t)=f(x(t), t)$
egg. $\dot{x}=A x+\sin (t), \dot{x}=A x+d(t) \quad$ captures all "no n-x" dependence.
- Control Systems: $\dot{x}(t)=f(x(t),(u(t))$
- vector field $f: \mathbb{R}^{n} \times \mathbb{R}^{m}$ depends on external variable $u(t) \in \mathbb{R}^{m}$

$$
\dot{x}=A x+\sin (u)
$$

- General Linear Control Systems:
- $x \in \mathbb{R}^{n}$: system state, $u \in \mathbb{R}^{m}$: control input, $y \in \mathbb{R}^{p}$: system output
- A, B, C, D are constant matrices with appropriate dimensions

Existence and Uniqueness of ODE Solutions

- Function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is called Lipschitz over domain $\mathcal{D} \subseteq \mathbb{R}^{n}$ if $\exists L<\infty$ "smooth"

- Theorem [Existence \& Uniqueness] Nonlinear ODE
 NOT Lipschit2.
has a unique solution if $f(x, t)$ is Lipschitz in x and piecewise continuous in t

$$
\left\|f(x, t)-f\left(x^{\prime}, t\right)\right\| \leqslant L \cdot\left\|x-x^{\prime}\right\|, \quad \forall \in \in\left[t_{0}, t_{f}\right]
$$

- Solution to (1) means: function sf $t, \hat{x}(t)$

$$
\Leftrightarrow\left\{\begin{array}{l}
\hat{x}\left(t_{0}\right)=\hat{z} x_{0} \\
\dot{x}(t)=f(\hat{x}(t), t), \forall t
\end{array}\right.
$$

Existence and Uniqueness of Linear Systems

- Corollary: Linear system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

has a unique solution for any piecewise continuous input $u(t)$

- vector field func: $f(x, t)=A x+B u(t)$
proof: check condition: (1) $\left\|f(x, t)-f\left(x^{\prime}, t\right)\right\|=\left\|A\left(x-x^{\prime}\right)\right\| \leqslant\|A\| x-x^{\prime} \|$
(2) $f(x, t)=A x+B u(t)$ is piecewise continuous L
in t?

Te, because $W(t)$ is piecewise continuous int (as stated in the

- Homework: Suppose A becomes time-varying $A(t)$, can you derive conditions to ensure existence and uniqueness of $\dot{x}(t)=A(t) x(t)+B u(t)$? condition)

Outline

- Linear System Model
- Matrix Exponential
- Solution to Linear Differential Equations

How to Solve Linear Differential Equations?

$$
\downarrow^{x(t) \in \mathbb{R}^{n}} \quad \ell^{d(t)=B u(t)}
$$

- General linear ODE: $\dot{x}(t)=A x(t)+d(t)$
- The key is to derive solutions to the autonomous linear case: $\dot{x}(t)=A x(t)$, with $x(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, and initial condition (IC) $x(0)=\widetilde{x_{0}}$.
- By existence and uniqueness theorem, the ODE $\dot{x}=A x$ admits a unique solution.
- It turns out that the solution can be found analytically via the Matrix Exponential

What is the "Euler's Number" e ?

- Consider a scalar linear system: $z(t) \in \mathbb{R}$ and $a \in \mathbb{R}$ is a constant

$$
\begin{equation*}
\dot{z}(t)=a z(t) \text { with initial condition } z(0)=z_{0} \tag{1}
\end{equation*}
$$

- The above ODE has a unique solution: $Z(t)=e^{a t} \cdot z_{0}$ proof: $\left\{\begin{array}{l}\text { check I.C. } \quad z(0)=z_{0} \\ \text { check vector field. } \dot{z}(t)=\left(e^{a t} z_{0}\right)^{\prime}=a\left(e^{a t} z_{0}\right)=a \cdot z(t)\end{array}\right.$
- What is the number "e"?
- Euler's number
- Defined as the number such that $\left(e^{x}\right)^{\prime}=e^{x}\left(^{\prime}\right)^{\prime} \neq 2^{x}$

$$
\begin{aligned}
\Rightarrow \lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=e^{x} & \Rightarrow \frac{e^{h}-1}{h} \xrightarrow{h \rightarrow 0}\left(3^{x}\right)^{\prime} \neq 3^{x} \\
& \Rightarrow e^{h} \rightarrow h+1 \Rightarrow e=\lim _{h \rightarrow 0} \frac{(h+1)^{1 / h}}{\approx} 1.71 \ldots
\end{aligned}
$$

Complex Exponential

- For real variable $x \in \mathbb{R}$, Taylor series expansion for e^{x} around $x=0$:

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)
$$

- This can be extended to complex variables:

$$
\left(1+x+\frac{x^{2}}{2!}+\cdots\right)^{\prime}=\left(b+1+x+\frac{x^{2}}{2!}+\cdots\right)
$$

$$
e^{z} \triangleq \sum_{k=0}^{\infty} \frac{z^{k}}{k!}=\frac{1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots}{\text { is well defined for all } z \in \mathbb{C}} \text { let } z=j \theta
$$

- In particular, we have $e^{j \theta}=1+j \theta-\frac{\theta^{2}}{2}-j \frac{\theta^{3}}{3!}+\cdots$ $=\cos \theta+j \sin \theta$
- Comparing with Taylor expansions for $\cos (\theta)$ and $\sin (\theta)$ leads to the Euler's

$$
\begin{aligned}
& \text { Formula } \begin{array}{l}
\sin \theta \text { Taylor expansion } \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta 5}{5!}-\frac{\theta^{7}}{7!} \\
\cos \theta \ldots \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!} \cdots+j \sin \theta
\end{array}
\end{aligned}
$$

Matrix Exponential Definition

- Similar to the real and complex cases, we can define the so-called matrix exponential for square $A \in \mathbb{R}^{n \times n}$

$$
e^{A} \triangleq \sum_{k=0}^{\infty} \frac{A^{k}}{k!}=\underbrace{I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots} \in \mathbb{R}^{n \times n}
$$

e.f. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \ldots$

$$
\begin{gathered}
e^{A}=I+A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
A=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \quad e^{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]+\left[\begin{array}{cc}
\frac{\lambda_{1}^{2}}{2!} & 0 \\
0 & \frac{\lambda_{2}^{2}}{2!}
\end{array}\right] \cdots=\left[\begin{array}{cc}
e^{\lambda_{1}} & 0 \\
0 & e^{\lambda_{2}}
\end{array}\right]
\end{gathered}
$$

- This power series is well defined for any finite square matrix $A \in \mathbb{R}^{n \times n}$.

Some Important Properties of Matrix Exponential
(1)-

$$
\text { - } \left.A e^{A}\right)=e^{A} A \text { proof: By definition }
$$

(2) $e^{A} e^{A} e^{B}=e^{A+B}$ if $A B=B A$
(3)- If $A=\underset{C}{P D P^{-1}}$, then $e^{A}=P e^{D} P^{-1} \int^{p I p^{-1}}$
P rousingular $A \sim D . \quad e^{A}=I+P D P^{-1}+\frac{P D P^{-1} P D P^{-1}}{2!}+\cdots$
(4)- For every $t, \tau \in \mathbb{R}) e^{A t} e^{A \tau}=e^{A(t+\tau)}=P e^{D} P^{-1}$ immediate from (2) $\left.\left(A_{1}\right) A_{1} C\right)=A_{2} A_{1}$
(5)

$$
\text { Fran 2, } \left.e^{(}\right) \frac{e^{-A}}{P}=e^{A+(-A)}=e^{[0-1}=I
$$

Outline

- Linear System Model
$\underset{\text { Matrix Exponential }}{\substack{e^{x}}} \rightarrow e^{(1)}$

Autonomous Linear Systems

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad \text { with initial condition } x(0)=x_{0} \tag{2}
\end{equation*}
$$

- $x(t) \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$ is constant matrix, $x_{0} \in \mathbb{R}^{n}$ is given.
- With the definition of matrix exponential, we can show that the solution to (2) is given by

$$
\underset{x(t)=\binom{\left(e^{A t t} x_{0}\right.}{\downarrow}}{\left(\mathbb{R}^{n}\right.} \text { function } t
$$

prof: $\left\{\begin{array}{l}\text { check I.C.: } x(0)=e^{A \cdot 0} x_{0}=x_{0} \\ \text { check vector field : }\end{array}\right.$
check vector field: $\frac{d}{d t}\left(e^{A t} x_{0}\right) \geqslant A e^{A t} x_{0}$
By definition:

$$
\begin{aligned}
\frac{d}{d t}\left(e^{(A t} x_{0}\right) & =\frac{d}{d t}\left(I+(A t)+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots\right) x_{0} \\
& =\left(A+A^{2} t+A^{3} \frac{t^{2}}{2!}+\cdots\right) x_{0}
\end{aligned}
$$

Computation of Matrix Exponential (1/2)

- Directly from definition :

$$
e^{A t}=\sum_{k=0}^{\infty} \frac{(A+)^{k}}{k!}
$$

$$
\begin{aligned}
& =A\left(I+A t+\frac{A_{2}^{2}}{2!}+\cdots\right)_{x} \\
& =A\left(e^{A+} x_{0}\right)
\end{aligned}
$$

It's hard to compute by hand For special case, $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], \quad A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow A^{3}=[0]$

- For diagonalizable matrix:

Example: $A=\left[\begin{array}{cc}1.5 & -0.5 \\ -0.5 & 1.5\end{array}\right]$

$$
\frac{e^{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}{\operatorname{prop}(3)}
$$

$$
\Rightarrow A t=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \underbrace{\left[\begin{array}{cc}
t & 0 \\
0 & 2 t
\end{array}\right]}_{D}{ }_{P}^{[-1}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] \stackrel{\operatorname{Prop}(3)}{\Rightarrow} e^{A t}=\left[\begin{array}{l}
\frac{1}{2} e^{t}+\frac{1}{2} e^{2 t}
\end{array}\right]
$$

Computation of Matrix Exponential (2/2) scalar:

- Using Laplace transform

$$
\hat{x}(s)=\int x(t) e^{-s t} d t
$$

- $\dot{x}=A x$. $x(\cdot)=x_{0} \in \mathbb{R}^{1}$, Laplace transform
* Apply L.T. $\Rightarrow \hat{S} \hat{X}(s)-x_{0}=A \hat{X}(s)$

$$
\begin{aligned}
&(s I-A) \hat{x}(s)=x_{0} \\
& \Rightarrow \hat{x}(s)=(s I-A)^{-1} x_{0} \\
& \Rightarrow x(t)=\alpha^{-1}\left((s I-A) x_{0}\right)
\end{aligned}
$$

Solution to General Linear Systems

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \tag{3}\\
y(t)=C x(t)+D u(t)
\end{array} \quad \text { with } x(0)=x_{0}\right.
$$

- $\underbrace{x \in \mathbb{R}^{n}}$ is system state, $u \in \mathbb{R}^{m}$ is control input, $y \in \mathbb{R}^{p}$ is the system output
- A, B, C, D are constant matrices with appropriate dimensions

$$
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}
$$

- Homework: The solution to the linear system (3) is given by

$$
\left\{\begin{array}{l}
x(t)=\left(e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right) \\
y(t)=C e^{A t} x_{0}+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t)
\end{array}\right.
$$

More Discussions

