MEE5114 Advanced Control for Robotics
 Lecture 8: Rigid Body Dynamics

Prof. Wei Zhang

CLEAR Lab
Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Acceleration

- Given a rigid body with spatial velocity $\mathcal{V}=\left(\omega, v_{o}\right)$, its spatial acceleration is coordinate free

$$
\mathcal{A}=\dot{\mathcal{V}}=\left[\begin{array}{c}
\dot{\omega} \\
\dot{v}_{o}
\end{array}\right] \quad A \triangleq \lim _{\delta \rightarrow 0} \frac{\mathcal{V}((t+f)-\mathcal{V}(t)}{\delta}
$$

- Recall that: v_{o} is the velocity of the body-fixed particle coincident with frame origin O at the current time t.

$$
q_{\text {y bidy-fixed }} v_{0}=\dot{q}
$$

- Note: $\dot{\omega}$ is the angular acceleration of the body
at time $t: 0=q(t) \quad V_{0}=\dot{q}(t)$, but $\dot{V}_{0} \neq \ddot{q}(t)$
- \dot{v}_{o} is not the acceleration of any body-fixed point!
- In fact, \dot{v}_{o} gives the rate of change in stream velocity of body-fixed particles passing through o

Spatial vs. Conventional Accel. (1/2)

- Why " \dot{v}_{o} is not the acceleration of any body-fixed point"?
- Suppose $q(t)$ is the body fixed particle coincides with o at time t_{0}
- So by definition, we have $v_{o}\left(t_{0}\right)=\dot{q}\left(t_{0}\right)$, however, $\dot{v}_{o}\left(t_{0}\right) \neq \ddot{q}\left(t_{0}\right)$, where $\ddot{q}\left(t_{0}\right)$ is the conventional acceleration of the body-fixed point q

$$
\text { - Note: } \dot{v}_{o}\left(t_{0}\right) \triangleq \lim _{\delta \rightarrow 0} \frac{v_{0}\left(t_{0}+\delta\right)-\left(v_{0}\left(t_{0}\right)\right.}{\delta} \dot{q}\left(t_{0}\right)
$$

At time $t=t_{0}, q\left(t_{0}\right)=0^{\prime \prime} \Rightarrow V_{0}\left(t_{1}\right)=\dot{q}\left(t_{0}\right)$
At fin c $t=t_{0}+\delta, q(t) \neq "_{0}, \Rightarrow V_{0}\left(t_{0}+\delta\right) \neq \dot{q}\left(t_{0}+\delta\right)$
Assume: at $t=t_{0}+\delta, \quad q_{1}(t,+\delta)=0, \Rightarrow V_{0}\left(t_{0}+\sigma\right)=\dot{q}_{1}\left(t_{0}+\delta\right)$
Note: q and q are different points:

$$
\dot{q}_{1}\left(t_{0}+\delta\right) \neq \dot{q}\left(t_{0}+\delta\right)
$$

Spatial vs. Conventional Accel. $(2 / 2)>$ shamble $\dot{q}_{1}\left(t_{0}+5\right)$

$$
\text { so } \quad \dot{v}_{0}\left(t_{0}\right)=\lim _{\delta \rightarrow 0} \frac{v_{0}\left(\xi_{+}+\delta\right)-v_{0}\left(t_{0}\right)}{\partial} \neq \lim _{\delta \rightarrow 0} \frac{\dot{q}\left(t_{0}+\delta\right)-\dot{q}\left(t_{0}\right)}{\delta}=\ddot{q}^{\prime}\left(t_{0}\right)
$$

$$
\Rightarrow \quad \ddot{q}(t)=\dot{b}(t)+\dot{\omega}(t) \times \overrightarrow{o q}(t)+w(t) \times \dot{q}(t)
$$

At $t=t_{1} ; \vec{v}=0 \Rightarrow \ddot{q}\left(t_{0}\right)=\dot{v}\left(t_{0}\right)+w\left(t_{0}\right) \times \dot{q}\left(t_{0}\right)$

- If $q(t)$ is the body fixed particle coincides with o at time t, then we have

$$
\ddot{q}(t)=\dot{v}_{o}(t)+\omega(t) \times \dot{q}(t)
$$

$$
q(t) \stackrel{\uparrow}{\leftrightharpoons}
$$

Plücker Coordinate System and Basis Vectors (1/3)

- Recall coordinate-free concept: let $r \in \mathbb{R}^{3}$ be a free vector with $\{0\}$ and $\{B\}$ frame coordinate ${ }^{\circ} r$ and ${ }^{B} r$

$$
\begin{aligned}
& { }^{\circ} r=\left[\begin{array}{c}
r_{r} \\
r_{x} \\
r_{r_{z}}
\end{array}\right] \in \mathbb{R}^{3} \Longleftrightarrow \quad \underset{\sim}{r=\left[\begin{array}{lll}
\hat{x}_{0} & y_{j} & z
\end{array}\right]^{\circ} r}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]} \tag{2}
\end{align*}
$$

$$
\text { (1) } \Rightarrow \dot{r}=\left[\begin{array}{lll}
\hat{x}_{0} & \hat{j} & \hat{z}_{0}
\end{array}\right] \frac{d}{d t}(\underline{r})
$$

apparent derivative

$$
\triangleq \circ \circ
$$

use (10)-frame to express physics:

$$
o(\dot{\gamma})=[\underbrace{\hat{x}_{0}}{ }^{\prime} \hat{y}_{0}{ }^{\prime} \hat{z}_{0}] \frac{d}{d t}(* r)=\frac{d}{d t}(o r)
$$

express, this "Physics" in "o" frame

$$
{ }^{0} r=\underbrace{\left.{ }^{0} \hat{X}_{B}{ }^{\circ} g_{B}{ }^{\circ} \hat{Z}_{B}\right]^{B} r}_{{ }^{0} R_{B}}
$$

rit $r(t)$
$\frac{d}{4}(e r)$

Plücker Coordinate System and Basis Vectors (2/3)

$$
\begin{aligned}
& \text { (2) } \Rightarrow r=\left[\hat{x}_{z}^{\prime} \cdot \hat{y}_{z}, \hat{z}_{s}\right]^{k r} \ldots \\
& \dot{x}_{B}=\omega_{B} \times \hat{x}_{B} \\
& B(\dot{r}) \neq \underbrace{(b r)^{\prime}}_{B r^{\circ}} x \text { if ing is changing, } \quad \text { " } R_{B} \\
& \dot{r}-\underbrace{\left[\begin{array}{lll}
\dot{\hat{x}}_{B} & \dot{\hat{y}}_{B} & \dot{\hat{z}}_{B}
\end{array}\right]^{\beta} r+\left[\begin{array}{lll}
\hat{x}_{B} & \hat{y}_{B} & \hat{z}_{B}
\end{array}\right]\left(\hat{r}^{\prime} r\right)^{\prime}} \\
& =\omega_{B} \times\left[\begin{array}{lll}
\hat{x}_{B} & \hat{y}_{B} & \hat{z}_{7}
\end{array}\right]^{q} r+\left[\begin{array}{lll}
\hat{x}_{B} & \hat{y}_{B} & \hat{z}_{B}
\end{array}\right](b r)^{\prime}
\end{aligned}
$$

use $\{B\}$ frame to express. "pin sics"
cordinach frame is moving

$$
\begin{aligned}
& B r=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad r=k_{B} \\
& =[i], \quad r=y_{i}+\hat{z}_{0}
\end{aligned}
$$

Plücker Coordinate System and Basis Vectors (3/3)

Given $\{B /$ frame

$$
\left\{e_{B_{1}} e_{B_{2}}-e_{B_{G}}\right\}-
$$

6 - motion basis vectors each twist is linear combination of 6 -motion basis vectors $] \Leftrightarrow v_{\text {body }} \triangleq e_{B 4}$

$$
\underbrace{V_{b d y}=\alpha_{1} e_{B_{1}}+\alpha_{2} e_{B_{2}}+\cdots+\alpha_{6} e_{B_{2}}}_{\text {coordinate free. }} \text {, where }\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\dot{\alpha_{1}}
\end{array}\right]=\mathcal{V}_{\text {body }}
$$

Work with Moving Reference Frame
use f.3-frame to express the above physics

$$
{ }^{\circ} V_{b o d y}=\alpha_{1}\left({ }^{\circ} e_{B_{1}}+\alpha_{2}{ }^{6} e_{B_{2}}+\cdots+\alpha_{6}{ }^{\circ} e_{B_{1}}\right)=\left[\begin{array}{llll}
{ }^{\circ} e_{B_{1}} & { }^{\circ} e_{B_{2}} & \ldots & { }^{\circ} e_{B_{6}}
\end{array}\right]^{B} V_{b o d y}
$$

" $e_{B_{i}}$: can be computed from "pliysics" and twist definition
Q. ${ }^{\circ} e_{B_{1}}$: unit sued rotation about \hat{x}_{B} axis expressed in $\{0\}$

$$
\begin{array}{l}
A_{b o d y} \triangleq \frac{d}{d t}\left(V_{b o d y}\right): \frac{V_{b o d y}}{}=\left[\begin{array}{llll}
e_{B_{1}} & e_{B_{2}} & \cdots & e_{B_{b}}
\end{array}\right]^{B} V_{b o d y} \\
\Rightarrow \quad A_{b o d y}=\underbrace{\left[\begin{array}{llll}
\dot{e}_{B_{1}} & \dot{e}_{B_{2}} & \ldots & \dot{e}_{B_{b}}
\end{array}\right]^{B} V_{b o d y}+\left[e_{B_{1}} \ldots\right.} e_{B_{1}}]
\end{array} \underbrace{\frac{d}{d t}\left(V_{b o d y}\right)}]
$$

(1) If $\{B\}$ does not change (e te. $\{0\}$ frame case)

$$
\dot{V}_{\text {body }}=\left[\begin{array}{lll}
e_{B_{1}} & \cdots & e_{B_{b}}
\end{array}\right]^{B} \dot{讠}_{\text {body }} \stackrel{\text { express :n } \dot{A B}_{B}}{\Rightarrow}{ }^{B} \dot{\gamma}_{\text {body }}={ }^{B} \dot{V}_{\text {body }}
$$

The key is to compute $\left[\begin{array}{llll}\dot{e}_{B_{1}} & \dot{e}_{B_{2}} & . & \dot{e}_{B_{6}}\end{array}\right] \in{ }_{\text {can be computed purely by physics }}$

- Now let's work with "o" frame to find $\mathcal{\text { P }}$.
(see Feather stone)
\Rightarrow we need to compute $\left[\begin{array}{llll}{ }^{\circ} \dot{e}_{B_{1}} & { }^{\circ} \dot{e}_{B_{2}} & \ldots & \dot{e}_{B_{6}}\end{array}\right]={ }^{\circ} \dot{X}_{B}=\frac{d}{d t}\left[\begin{array}{lll}A d_{T_{B}}\end{array}\right]$

Let's denste ${ }^{\circ} T_{B}=[R, p] \Rightarrow{ }^{0} \dot{X}_{B}=\frac{d}{d t}\left(\left[\begin{array}{cc}R & 0 \\ R & R\end{array}\right]\right) \quad R=\left[x_{B} y_{n} z\right.$

$$
\dot{R}=\omega \times R,([p] R)^{\prime}=[\underbrace{[\dot{\rho}] R+[p] \dot{R}}
$$

Note: $\dot{p}=v_{0}+w \times \overrightarrow{o p}$

$$
[\dot{p}]=\left[v_{0}+w \times p\right]
$$

$$
=\left[v_{0}\right]+\underbrace{[w \times p]}
$$

$$
\left\{\begin{array}{l}
\left.=\left[v_{0}\right] R+[w][\rho] R-[p](w] R+[\rho]\right][(u] R \\
=\left[u_{0}\right] R+[w][\rho] R
\end{array}\right.
$$

$$
=\left[v_{0}\right]+[w][p]-[p](w)
$$

$$
\Rightarrow \overbrace{}^{0} \dot{X}_{B}=\left[\begin{array}{l}
{[\omega] R} \\
{\left[v_{0}\right] R+[w][p] R}
\end{array}\right.
$$

$$
\left[\begin{array}{ll}
{\left[v_{0}\right] R+[w][p] R} & {[w] R}
\end{array}\right]=\left[\begin{array}{ll}
{[w]} & x_{B} \\
{\left[v_{0}\right]} & {[w]}
\end{array}\right]
$$

$$
\begin{aligned}
& \left(\dot{X}_{B}\right)=\left[\begin{array}{ll}
{[w]} & 0 \\
{\left[v_{0}\right]} & {[w]}
\end{array}\right]^{\circ} X_{B} \stackrel{\underbrace{}_{B} \times \operatorname{din}(t w i s t}{ح_{B}} X_{B} \\
& \text { 6-din (twist cross/ } \\
& { }^{\circ} \dot{R}_{B}={ }^{0} \omega_{B} \times{ }^{0} R_{B}=\left[{ }^{0} \omega_{B}{ }^{0} R_{B}\right.
\end{aligned}
$$

Nation: Given $\nu_{1}=\left[\begin{array}{l}w \\ v\end{array}\right], \quad\left(V_{1} x\right] \triangleq\left[\begin{array}{ll}{[\omega]} & 0 \\ {[v]} & {[\omega]}\end{array}\right]$ Recall: $[v]=\left[\begin{array}{cc}{[w]} & v \\ 0 & 0\end{array}\right] \operatorname{ese}(3)$

In coordinate free: $R_{B}=\left[\begin{array}{lll}\hat{x_{B}} & \hat{y_{B}} & \hat{z}_{B}\end{array}\right],\{B\}: \omega_{B}$ rotation

$$
\begin{gathered}
\dot{R}_{B}=\omega_{B} \times R_{B} \\
X_{B}=\left[\begin{array}{lll}
e_{B_{1}} & e_{B_{2}} \cdots e_{B_{6}}
\end{array}\right],\{B\} \text { has twist } \nu_{B} \\
\dot{X}_{B}=V_{B} \times X_{B}, \quad \dot{e}_{B_{1}}=\nu_{B} \times e_{B_{1}},
\end{gathered}
$$

Derivative of Adjoint

- Suppose a frame $\{\mathrm{A}\}$'s pose is $T_{A}=\left(R_{A}, p_{A}\right)$, and is moving at an instantaneous velocity $\mathcal{V}_{A}=(\omega, v)$. Then

Spatial Cross Product

- Given two spatial velocities (twists) \mathcal{V}_{1} and \mathcal{V}_{2}, their spatial cross product is:

$$
\underbrace{\mathcal{V}_{1} \times \mathcal{V}_{2}}=\left[\begin{array}{l}
\omega_{1} \\
v_{1}
\end{array}\right] \times\left[\begin{array}{l}
\omega_{2} \\
v_{2}
\end{array}\right] \triangleq\left[\begin{array}{c}
\omega_{1} \times \omega_{2} \\
\omega_{1} \times v_{2}+v_{1} \times \omega_{2}
\end{array}\right]
$$

Lie Bracket

- Matrix representation: $\underline{\mathcal{V}}_{1} \times \mathcal{V}_{2}=\left[\mathcal{V}_{1} \times\right] \mathcal{V}_{2}$, where

$$
\left[\mathcal{V}_{1} \times\right] \triangleq\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & 0 \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]
$$

- Roughly speaking, when a motion vector \mathcal{V} is moving with a spatial velocity \mathcal{Z} (e.g. it is attached to a moving frame) but is otherwise not changing, then

$$
\dot{\mathcal{V}}=\mathcal{Z} \times \mathcal{V}
$$

Spatial Cross Product: Properties $(1 / 1)$

- Assume A is moving wrt to O with velocity \mathcal{V}_{A}

$$
{ }^{\circ} \dot{X}_{A}=\left[{ }^{\circ} \mathcal{V}_{A} \times\right]^{o} X_{A}
$$

介
$[k \omega]=R[\omega) R^{\top}$

Spatial Acceleration with Moving Reference Frame
Consider a body with velocity $\mathcal{V}_{\text {body }}$ (wry inertia frame), and ${ }^{\mathcal{V}} \mathcal{V}_{\text {body }}$ and ${ }^{B} \mathcal{V}_{\text {body }}$ be its Plücker coordinates wry $\{\mathrm{O}\}$ and $\{\mathrm{B}\}$:

$$
\begin{aligned}
& \text { 凹 }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{B}\left(\frac{d}{d+}\left(v_{b o d y}\right)\right) \\
& \begin{array}{l}
\left.-A_{A}\right)={ }^{\circ} X_{B} \text { (A) } \rightarrow B\left(\frac{d}{d t}\left(V_{\text {baby }}\right)\right) \\
\cdot\left(\frac{d}{H}\left(V_{\text {id }}\right)\right)
\end{array}
\end{aligned}
$$

Vary: boll velocity twist

$$
\begin{aligned}
& =\frac{\left[V_{B} x^{2} x_{B}{ }^{3} V_{\text {poly }}+\left(x_{B}\right)^{B} V_{\text {holy }}\right.}{5}
\end{aligned}
$$

Spatial Acceleration Example

- Find ${ }^{B} A_{\text {top }}={ }^{\beta}\left(\frac{d}{d t} V_{\text {top }}\right)$

Motto 1: $\quad={ }^{n} \dot{\gamma}_{\text {top }}+{ }^{p} \gamma_{1} \times{ }^{2} \nu_{\text {top }}$

$$
\begin{aligned}
& { }^{*} V_{\text {op }}=\left[\begin{array}{c}
0 \\
0 \\
S_{0}^{0} \\
\substack{0 \\
-02 \\
0}
\end{array}\right] \\
& \begin{array}{l}
{ }^{s} w=\left[\begin{array}{l}
0 \\
5 \\
50 \mathrm{ma} / \mathrm{s}
\end{array}\right] \\
s_{V_{B}}=\left[\begin{array}{c}
0 \\
0.02 \\
3
\end{array}\right]
\end{array} \\
& { }^{B} A_{\text {top }}=\frac{d}{d+}\left({ }^{B} V_{\text {top }}\right)+{ }^{B} V_{\text {Btanac }} \times{ }^{B} V_{\text {op }} \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.0 \\
0.0
\end{array}\right] \times\left[\begin{array}{c}
0 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[{ }^{8} x_{0} V_{2} x\right]=\left[{ }^{8} V_{b} x\right]}
\end{aligned}
$$

$$
\begin{aligned}
& +{ }^{5} \dot{V}_{6000} 3
\end{aligned}
$$

$\left[\begin{array}{cc}{[w]} & 0 \\ \text { (v) } & \text { nd }\end{array}\right.$

Outline Method 2: use $\{0\}$ frame

- Spatial Acceleration
- Spatial Force (Wrench)

$$
{ }^{\circ} A=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
{ }^{B} A & ={ }^{B} X \cdot{ }^{\circ} A \\
& =\left[\begin{array}{lll}
I & 0 \\
{[p] I T} & I
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
\vdots \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

- Spatial Momentum

Spatial Force (Wrench)

- Consider a rigid body with many forces on it and fix an arbitrary point O in space
- The net effect of these forces can be expressed as - A force f, acting along a line passing through O

$$
f=\sum_{\tau} f_{i}
$$

- A moment n_{O} about point O

$$
n_{0}=\sum_{i}\left(\overrightarrow{O p_{i}}\right) \times f_{i}
$$

- Spatial Force (Wrench): is given by the 6D vector
recall:

$$
\mathcal{F}=\left[\begin{array}{c}
n_{O} \\
f
\end{array}\right] \text { wrench }
$$

$$
v_{q}=v_{0}+w \times \overrightarrow{o q}
$$

- what if we charge reference point from "o" to " q "

$$
\begin{aligned}
& n_{q}=\sum_{i}\left(q p_{i}\right) \\
& \text { by definition } f_{i}=n_{0}+\sum_{i}\left(\overrightarrow{q p_{i}} \times f_{i}-\overrightarrow{O p_{i}} \times f_{i}\right) \\
&=n_{0}+\sum_{i}\left(\overrightarrow{q p_{i}}-\overrightarrow{O p_{i}}\right) \times f_{i}
\end{aligned}
$$

Spatial Force in Plücker Coordinate Systems

$$
=n_{0}+\sum_{i} \bar{q} \vec{O} \times f_{i}
$$

$$
=n^{+}+\vec{q} \times f^{\prime}
$$

- Given a frame $\{\mathrm{A}\}$, the Plücker coordinate of a spatial force \mathcal{F} is given by convention: clause frame sigh.

$$
\begin{aligned}
& \text { n: clause frame sigh. } \\
& \text { as refine pout. }
\end{aligned}{ }^{1} \mathcal{F}=\left[\begin{array}{c}
A_{n_{O_{A}}} \\
A_{f}
\end{array}\right]
$$

- Coordinate transform: ${ }^{A} \mathcal{F}={ }^{A} X_{B}^{* B} \mathcal{F}$ where ${ }^{A} X_{B}^{*}={ }^{B} X_{A}{ }^{T}$

Front $(A),\{B\}$, with ${ }^{A} T_{B}=\left({ }^{A} R_{B}, A \rho_{B}\right)$

$$
=n_{0}+f \times \overrightarrow{0 q}
$$

$$
n_{q}=n_{0}+f \times \overrightarrow{0}
$$

$$
=n_{0}+\overrightarrow{q_{0}} \times f
$$

- moment: corrdinate-free: $\quad n_{D_{A}}=n_{D_{B}}+\left(f \times\left(\overrightarrow{D O}_{B} O_{A}\right)\right)$

$$
\begin{aligned}
& \text { chore }\{A\} \text { frame te express: }{ }^{A} n_{A}={ }^{A} R_{B}{ }^{B} \cap_{O_{B}}+{ }^{A} R_{B}\left({ }^{6} f \times{ }^{B}\left(\overrightarrow{O_{B}^{0}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \triangleq{ }^{A} X_{B}^{*} \\
& { }^{B} X_{A}=\left[\begin{array}{c:c}
{ }^{B} R_{A} & 0 \\
\hdashline\left[{ }^{B_{A}}{ }_{A}{ }^{B} R_{A}\right. & { }^{B} R_{A}
\end{array}\right],{ }^{B} X_{A}^{\top}=\left[\begin{array}{c:c}
{ }^{A} R_{B} & { }^{A} R_{B}\left[{ }^{B} R_{A}\right] \\
\hdashline 0 & { }^{A} R_{B}
\end{array}\right] \\
& \Rightarrow{ }^{A} X_{B}^{*}=\left({ }^{B} X_{A}\right)^{\top}
\end{aligned}
$$

Wrench-Twist Pair and Power

$$
\stackrel{\rightharpoonup}{\longleftrightarrow} v
$$

$$
\text { over } \left.=f^{\top} v \ll f, v\right\rangle
$$

- Recall that for a point mass with linear velocity v and linear force f. Then we know that the power (instantaneous work done by f) is given by $f \cdot v=f^{T} v$
- This relation can be generalized to spatial force (ie. wrench) and spatial velocity (ie. twist)
- Suppose a rigid body has a twist ${ }^{A} \mathcal{V}=\left({ }^{A} \omega_{,}{ }^{A} v_{O_{A}}\right)$ and a wrench ${ }^{A} \mathcal{F}=\left({ }^{A} n_{o_{A}},{ }^{A} f\right)$ acts on the body. Then the power is simply

$$
\begin{aligned}
& \underbrace{P}_{\text {scalar }}=\underbrace{\left({ }^{A} \mathcal{V}\right)^{T}}_{\mid \times 6}{ }^{{ }^{A} \mathcal{F}}=A_{|x|}^{T / V} \\
& =(\underbrace{A} \omega)^{\top}\left({ }^{A} n_{D_{A}}\right)+{ }^{A} V_{D_{A}}{ }^{A} f \\
& \text { rotational power }
\end{aligned}
$$

Joint Torque

- Consider a link attached to a 1 -dof joint (e.g. revolute or prismatic). Let $\hat{\mathcal{S}}$ be the screw axis of the joint. The velocity of the link induced by joint motion is given by: $\mathcal{V}=\hat{\mathcal{S}} \dot{\theta}$

- \mathcal{F} be the wrench provided by the joint. Then the power produced by the joint is
- $\tau=\hat{\mathcal{S}}^{T} \mathcal{F}=\mathcal{F}^{T} \hat{\mathcal{S}}$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
- Often times, τ is referred to as joint "torque" or generalized force

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

$$
\begin{aligned}
& \text { Rotational Inertia (1/2) } \\
& \text { - Recall momentum for point mass: } \\
& \text { Linear motion: } \\
& \text { velocity: } V=\dot{r}, a=\dot{v}=\ddot{r} \in \mathbb{R}^{3} \leftrightarrow \quad \underline{w}=\hat{W} \theta, \quad v=w \times r \\
& \text { force: } f=m a=m \dot{v}=m \ddot{r} \leftrightarrow \text { moment: } n=r \times f \\
& \text { Linear } \quad L=m \cdot v \\
& \text { momentum: } \\
& \text { rotational } \\
& \omega=\hat{\omega} \theta, \quad v=\omega \times r \\
& \leftrightarrow \text { Angular momentum: } \\
& \phi=r \times L \\
& \begin{array}{l}
=r \times(m w \times r) \\
=m[r][-r] \omega[r][r]^{\top}
\end{array}
\end{aligned}
$$

Rotational Inertia（2／2）
－Rotational Inertia： $\bar{I}=\int_{V}{ }^{\rho(r)}[r][r]^{T}(d r) \rightarrow$ point mass 做积召． －$\rho(\cdot)$ is the density function of the body
－ \bar{I} depends on coordinate system $\phi=\sum_{m_{i}\left[r_{i}\right]\left[r_{i} I^{2}\right.} \omega$
this matrix defends on coordime say stem
－It is a constant matrix if the origin coincides with CoM What＇s def of Center of Mars：

$$
c \underbrace{C O M=\frac{1}{m}}_{0} \int \underbrace{m}_{c(r)} \sum m_{i} r_{i}
$$

If C is $C \cdot M$ ，then $\frac{1}{m} \sum m:\left(\overrightarrow{c r}_{i}\right)=0$

$$
\begin{equation*}
\Rightarrow \sum m_{i} \overrightarrow{r_{r}}=0 \Rightarrow \sum m_{i}\left[\overrightarrow{c r_{i}}\right]=0 . \tag{0}
\end{equation*}
$$

Spatial Momentum

- Consider a rigid body with spatial velocity $\mathcal{V}_{C}=\left(\omega, v_{C}\right)$ expressed at the center of mass C (derivation below works only when $C=C . m$)
- Linear momentum:

$$
\underbrace{L \triangleq m \underset{\sim}{v_{c}^{C}} \text { velocity of Com why? }}_{\text {about CoM: }}
$$

- Angular momentum about CoM:

$$
\phi_{c} \triangleq \bar{I}_{c} \omega \Leftarrow \phi_{c}=\sum_{i} \overrightarrow{c r_{i}} \times\left(m_{i} v_{i}\right)=\sum_{i} \vec{r}_{i} x
$$

lobdéintingular momentum about a point O :

$$
\phi_{0}=\sum_{i} \overrightarrow{\partial r_{i}} \times\left(m_{i} v_{i}\right) \stackrel{\downarrow \cdot F \cdot Y}{=} \phi_{c}+\overrightarrow{O C} \times L
$$

- Spatial Momentum:

$$
h \triangleq\left[\begin{array}{c}
\phi_{i} \\
L
\end{array}\right], \begin{gathered}
\text { reference } \\
\text { pint } \\
\psi
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
(m_{i} v_{c}+m_{i}=w_{c}{\left.\underset{c}{r_{i}}\right)}_{\sum_{i} m_{i} v_{c}}^{m_{c}}+\underbrace{\sum_{i} m_{i} c r_{i} \times(-w)}_{i=} \underbrace{}_{\left(\sum_{1} m_{i}:\left[r_{i}\right]\right) w} \\
\left(\overrightarrow{c r} \times m_{i} v_{c}\right)+\sum m_{i} \overrightarrow{r r} \times w \times \overrightarrow{v_{i}}=\overrightarrow{I_{c}} w
\end{array} \\
& =\sum_{i} m_{i}\left(v_{c}+w \times \overrightarrow{r_{i}}\right)
\end{aligned}
$$

Change Reference Frame for Momentum

$$
\frac{v_{a}=v_{c}+w \times \vec{q}}{v_{c}=n_{c}+\vec{c} \times f}
$$

- Spatial momentum transforms in the same way as spatial forces:

$$
\begin{align*}
& { }^{B} h=\left[\begin{array}{l}
\beta_{O_{O B}} \\
\rho_{L}
\end{array}\right] \\
& { }^{A} h=\left[\begin{array}{l}
{ }^{A} \phi_{0_{A}} \\
{ }_{\alpha}
\end{array}\right] \tag{2}\\
& { }^{A} \phi_{O_{B}} \text { is a valid notion } \\
& { }^{A} L={ }^{A} R_{B}{ }^{B} L \\
& \underbrace{\phi_{O_{A}}=\phi_{O_{B}}+\left(\overrightarrow{O_{A} \nabla_{B}} \times L\right)}_{\text {coordinate - free }} \\
& \Rightarrow{ }^{A} h=\underbrace{}_{\mathbb{U}_{\text {same as }}{ }^{A} X_{B}^{*} h}
\end{align*}
$$

same as change of coordinate for wrench

Spatial Inertia h similar t. force \mathcal{F} : think abas inertia mat lix as mapping from motion space M to

- Inertia of a rigid body defines linear relationship between velocity and momentum.
- Spacial inertia \mathcal{I} is the one such that

$$
h=\mathcal{I V}
$$

motion space $\left\{\begin{array}{l}\text { twist } V \\ \text { Accelleration } A\end{array}\right.$
Free space: $\left\{\begin{array}{l}\text { wrench } \\ \text { momentum }\end{array}\right.$

- Let $\{C\}$ be a frame whose origin coincide with CoM. Then

In this case we kn .w

$$
\underbrace{{ }^{C} \mathcal{I}}_{b \times b}=\left[\begin{array}{cc}
\frac{{ }^{C} \bar{I}_{c}}{0} & 0 \\
0 & \underbrace{}_{B} I_{y_{3}}
\end{array}\right]
$$

matrix
3×3 identity matrix

$$
\begin{aligned}
& { }^{c} V=\left[\begin{array}{l}
c \\
c \\
c v_{c}
\end{array}\right], \quad{ }^{c} v_{\text {com }}={ }^{c} V_{c} \Rightarrow{ }^{c}{ }_{L}=m^{c} v_{c} \\
& { }^{c} \phi_{c}={ }^{c} \bar{I}_{c}{ }^{c} w \quad{ }^{c} h=\left[\begin{array}{c}
{ }^{c} \bar{I}_{c} c^{w} \\
m{ }^{c} v_{c}
\end{array}\right]=\left[\begin{array}{cc}
c^{c \bar{I}_{c}} & 0 \\
0 & m I_{2 \times 3}
\end{array}\right][\mathcal{V}]
\end{aligned}
$$

Spatial Inertia

- Spatial inertia wry another frame $\{\mathrm{A}\}$:

$$
\underbrace{{ }^{A}} h=\left({ }^{A} \mathcal{I}={ }^{A} X_{C}^{*}\right)^{C} \mathcal{I}^{C} X_{A} \gamma={ }^{A} X_{C}^{*}{ }^{C} h={ }^{A} X_{c}^{*} \mathcal{I}^{C} V=\left({ }^{A} X_{c}^{*}{ }^{C} \mathcal{I}{ }^{C} X_{A}^{A}\right)\rangle
$$

- Special case: ${ }^{A} R_{C}=I_{3}$ ($\begin{gathered}A^{\prime} ' s \\ \text { orientation is the same as }\{c\rangle \text {). } \\ \text {. }\end{gathered}$

$\stackrel{\uparrow}{\langle | A \mid}$

$$
\begin{aligned}
& \text { we know: }{ }^{4} X_{C}=\left[\begin{array}{cc}
I_{3} & 0 \\
{\left[{ }^{[1} P_{c}\right]} & I_{3}
\end{array}\right] \\
& A^{A}=\left[\begin{array}{cc}
{ }^{C} \bar{I}+m\left[H \rho_{c}\right]\left[{ }^{\prime} P_{C}\right]^{\top} & m\left[{ }^{+} P_{c}\right] \\
m\left[\eta_{c}\right] & m I_{1 / 3}
\end{array}\right]
\end{aligned}
$$

It turn out (if $\left\{B 3\right.$ has velocity ${ }^{B j}$ de

- Newton-Euler Equation using Spatial Vectors then

$$
\dot{x}_{B}^{\star}=\nu_{B} x^{*} x_{B}^{*}
$$

where "x*" defined as:

$$
V=\left[\begin{array}{l}
w \\
v
\end{array}\right], \quad \tilde{f}=\left[\begin{array}{l}
n \\
f
\end{array}\right], \quad V x^{*} \tilde{f} \triangleq\left[\begin{array}{c}
w \times n+v \times f \\
w \times f
\end{array}\right]=
$$

Cross Product for Spatial Force and Momentum

Fact: $\left[V x^{*}\right]=-[V x]^{\top}$

$$
\underbrace{\dot{f}=X_{B}^{+} a^{\circ} f+\left[\nu_{B} x^{x}\right] X_{B}^{+} Q}_{\Downarrow}
$$

use SBS to express this Tihysion

$$
{ }^{B} \tilde{f}=B \tilde{f}+\left[{ }^{B} V_{B} x^{+}\right]^{B} \tilde{f}
$$

Newton-Euler Equation

- Newton-Euler equation:

$$
\begin{aligned}
& \text { net wrench } \\
& \text { applied to boll y coordinate -free } \\
& \downarrow \text { the } \\
& \mathcal{F}=\frac{d}{d t} h=\mathcal{I} \mathcal{A}+\mathcal{V} \times^{*} \mathcal{I} \mathcal{V}^{\boldsymbol{V}}
\end{aligned}
$$

ie. its form do does not depend on coordinate-syytem

- Adopting spatial vectors, the Newton-Euler equation has the same form in any frame

$$
\begin{aligned}
& F \doteq \frac{d}{d t}(h)=\frac{d}{d t}(\Psi \nu)=I \mu+\dot{I} \nu 2 \\
& \begin{array}{l}
=\frac{I A}{\downarrow}+\sqrt{\nu x^{*} I D} \leftarrow \text { due to inertia } \\
\text { due to } V \text { (velocity }) \quad \text { is changing }
\end{array} \\
& \text { Assumptions: } \\
& \text { is changing }
\end{aligned}
$$

Let's work with inertia frame [.1 to derive the $N E$ - equation

$$
\begin{array}{ll}
\text { Assumptions: } \\
& -d B\rangle: \text { body fixed } \\
& V_{B}=V_{b o d y}, B \mathcal{I} \text { constant }
\end{array}
$$

Derivations of Newton-Euler Equation

$$
\begin{aligned}
& \text { - } \quad 0 \hat{f}=0\left(\frac{d}{d t} h\right)=\frac{d}{d t}(0 h)=\frac{d}{d t}\left({ }^{\circ} I^{\circ} \mathcal{V}\right)=0^{\circ} \mathcal{I ^ { \circ }}+^{\circ} \mathcal{I}^{\circ} A \\
& =\frac{d}{d t}\left({ }^{0} x_{B}^{\beta} \mathcal{I}^{B} x_{0}\right)^{0} V+{ }^{0} \mathcal{I} \mathcal{A} \\
& ={ }^{0} \dot{X}_{B}{ }^{\alpha} I^{B} X_{0}{ }^{0} V+{ }^{0} X_{B}^{+}{ }^{\circ} I \dot{X}_{0}{ }^{0} V+{ }^{0} I A
\end{aligned}
$$

$$
\begin{aligned}
& =1 \mathcal{I} \mathcal{A}+\nu_{B} \times{ }^{+} I \mathcal{\nu} \\
& \text { side note } \\
& B \dot{x}_{0} \text { ? } \\
& \text { - we know } \\
& { }^{\circ} \dot{X}_{B}=\left[V_{B} \times\right]^{0} X_{B} \\
& \left({ }^{a} X_{B}{ }^{B} X_{0}\right)^{\phi}=I \\
& { }^{\circ} \dot{X}_{B}{ }^{B} X_{0}+{ }^{9} X_{B} B \dot{X}_{0}=0 \\
& { }^{B} \dot{X}_{0}=-{ }^{B} X_{0}{ }^{0} \dot{X}_{B}^{B}{ }^{B} X_{0} \\
& =-{ }^{B} X_{0}\left[y_{B} y_{B}\right]^{0} X_{B}{ }^{B} x_{0} . \\
& =B, 0 \gamma=x_{0}
\end{aligned}
$$

choose amy frame: ${ }^{B} \mathcal{f}=B P B^{B} A+B y \times+{ }^{B} P Q$

More Discussions

- Review/summary: $\int\left[\dot{v}_{0}\right]$ coordinate-free.
- Spatial accelleration: $A \in \mathbb{R}^{l} . A_{b o d y} \triangleq \lim _{\delta \rightarrow 0} \frac{\mathcal{V}_{\text {by }}(t+y)-V_{\text {baby }} / 2}{\delta}$
- working with inertia/stationsing frame: $\quad 厶, \dot{V}_{\text {body }}$

$$
\left.0\left(\frac{d}{d t} v_{\text {body }}\right) \Leftarrow{ }^{\circ} A_{\text {body }}\right)=\underbrace{\frac{d}{d t}\left(v_{\text {odd }}\right)}
$$

$$
\begin{aligned}
& { }^{B} A_{\text {baby }} \neq\left({ }^{B} V_{\text {booty }}\right)^{\prime} \\
& { }^{B} A_{\text {booty }}=\frac{d}{d t}\left({ }^{B} V_{\text {body }}\right)+{ }^{8} V_{B} x^{B} V_{\text {body }} \\
& { }^{B} A_{\text {body }}={ }^{B} X_{0}\left({ }^{0} A_{\text {body }}\right) \\
& \left.V_{x}: \triangleq \underset{\text { bx }}{\left[V_{x}\right]}\right]=\left[\begin{array}{ll}
{[w]} & 0 \\
{[v)[(w)}
\end{array}\right] \\
& {\left[\begin{array}{c}
v \times 4
\end{array}\right]=\left[\begin{array}{ll}
(\omega) & v \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

SAS

- Rerall: $\quad \dot{R}_{A}=\omega_{A} \times R_{A}, \quad[R \omega]=R[\omega] R^{T}$

Corresponding: ${ }^{0} \dot{X}_{A}=\underbrace{0} V_{A} \times{ }^{0} X_{A},[\underbrace{X V}_{6 x}]=\underbrace{X[\nu x] X^{\top}}$

More Discussions

- Review / Summary.
-spatial acceleration: $A \in \mathbb{R}^{6} . A b o d y \triangleq \lim _{d \rightarrow 0} \frac{V \text { body }(t+\delta)-V \text { body }(t)}{\delta} \triangleq \dot{V}$ body.
- working with inertia/stationay frame:
apparent devivate ${ }^{\circ}$ body
- working with moving frame: (suppose $[B \mid$ is moving). screw axis

$$
\begin{aligned}
& { }^{B} A b_{0} d y \neq\left({ }^{B} \mathrm{O} b_{i} d y\right)^{\prime} \\
& \text { spatial cross product. } \\
& {\left[\begin{array}{c}
v]_{4 \times 4}
\end{array}=\left[\begin{array}{cc}
\omega & 2 \\
0 & 0
\end{array}\right]\right.} \\
& { }^{B} A \text { body }=\frac{d}{d t}\left({ }^{B} D_{\text {bod }}\right)+\left.\right|^{3} V_{B} \times{ }^{B}{ }^{B} \text { body } \\
& { }^{B} \text { body }={ }^{B} X_{0}\left({ }^{\circ} A \text { body }\right) \\
& V_{x} \triangleq \underset{b \times b}{I_{V}}=\left[\begin{array}{lll}
{[w} & 2 & 0 \\
L_{V} & I & \left.I_{w}\right)
\end{array}\right]
\end{aligned}
$$

More Discussions

- Recall: $\begin{gathered}\dot{R}_{A}=\omega_{A} \times R_{A} . \quad\left[R \omega l=R I \omega 2 R^{\top}\right. \\ \text { ordinate free } .\end{gathered}$ wriesproding: ${ }^{\circ} \dot{X}_{A}=\frac{{ }^{0} V_{A} X^{0} X_{A}}{} . \quad\left[X V_{X}\right]=X\left[V X I X^{\top}\right.$. spatial cross product.
- spatial force/ wrench: $\quad{ }^{B} \mathcal{F}=\left[\begin{array}{c}{ }^{B} \eta_{B} \\ B_{B} f\end{array}\right] \quad A \mathcal{F}=A^{A} X_{B}^{*} B \mathcal{B}$

$$
\begin{aligned}
& { }^{\circ} \dot{X}_{A}^{*}=V_{A} x^{*}{ }^{0} X_{A}^{+} \quad{ }^{A} X_{B}^{*}=\left({ }^{B} X_{A}\right)^{\top} \\
& =\left[V_{A} x^{k}\right]^{0} X_{A}^{k} \quad \text {. Joint torque - } \\
& \Rightarrow \tau \dot{\theta}=\nu^{\top} \tau=\left(s^{\top} \dot{\theta}\right) \widetilde{f} \\
& \tau=s^{\top} \mathcal{F}=\mathcal{F}^{\top} s
\end{aligned}
$$

More Discussions spatial momentum:

$$
{ }^{A} h=\left[\begin{array}{c}
A \\
\phi_{D_{A}} \\
{ }^{A} L
\end{array}\right], \quad{ }^{A} h={ }^{A} X_{B}^{*}{ }^{B} h
$$

spatial inertia matrix o(com frame)

$$
\begin{gathered}
c I=\left[\begin{array}{ccc}
c I & \ddots \\
\cdots & m I_{3}
\end{array}\right] \\
A=A X_{c}^{+} \simeq C X_{A} \\
N E: \quad \Gamma=\frac{d}{d t}(h)=I A+V X^{\infty} I Y
\end{gathered}
$$

