MEE5114 Advanced Control for Robotics
 Lecture 8: Rigid Body Dynamics

Prof. Wei Zhang

CLEAR Lab
Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Acceleration

- Given a rigid body with spatial velocity $\mathcal{V}=\left(\omega, v_{o}\right)$, its spatial acceleration is

$$
\mathcal{A}=\dot{\mathcal{V}}=\left[\begin{array}{c}
\dot{\omega} \\
\dot{v}_{o}
\end{array}\right]
$$

- Recall that: v_{o} is the velocity of the body-fixed particle coincident with frame origin o at the current time t.
- Note: $\dot{\omega}$ is the angular acceleration of the body
- \dot{v}_{o} is not the acceleration of any body-fixed point!
- In fact, \dot{v}_{o} gives the rate of change in stream velocity of body-fixed particles passing through o

Spatial vs. Conventional Accel. (1/2)

- Why " \dot{v}_{o} is not the acceleration of any body-fixed point"?
- Suppose $q(t)$ is the body fixed particle coincides with o at time t_{0}
- So by definition, we have $v_{o}\left(t_{0}\right)=\dot{q}\left(t_{0}\right)$, however, $\dot{v}_{o}\left(t_{0}\right) \neq \ddot{q}\left(t_{0}\right)$, where $\ddot{q}\left(t_{0}\right)$ is the conventional acceleration of the body-fixed point q
- Note: $\dot{v}_{o}\left(t_{0}\right)=\lim _{\delta \rightarrow 0} \frac{v_{o}\left(t_{0}+\delta\right)-v_{o}\left(t_{0}\right)}{\delta}$

Spatial vs. Conventional Accel. (2/2)

- If $q(t)$ is the body fixed particle coincides with o at time t, then we have

$$
\ddot{q}(t)=\dot{v}_{o}(t)+\omega(t) \times \dot{q}(t)
$$

Plücker Coordinate System and Basis Vectors (1/3)

- Recall coordinate-free concept: let $r \in \mathbb{R}^{3}$ be a free vector with $\{0\}$ and $\{B\}$ frame coordinate ${ }^{\circ}$ and ${ }^{B} r$

Plücker Coordinate System and Basis Vectors (2/3)

Plücker Coordinate System and Basis Vectors (3/3)

Work with Moving Reference Frame

Derivative of Adjoint

- Suppose a frame $\{\mathrm{A}\}$'s pose is $T_{A}=\left(R_{A}, p_{A}\right)$, and is moving at an instantaneous velocity $\mathcal{V}_{A}=(\omega, v)$. Then

$$
\frac{d}{d t}\left(\left[\operatorname{Ad}_{T_{A}}\right]\right)=\left[\begin{array}{cc}
{[\omega]} & 0 \\
{[v]} & {[\omega]}
\end{array}\right]\left[\operatorname{Ad}_{T_{A}}\right]
$$

Spatial Cross Product

- Given two spatial velocities (twists) \mathcal{V}_{1} and \mathcal{V}_{2}, their spatial cross product is:

$$
\mathcal{V}_{1} \times \mathcal{V}_{2}=\left[\begin{array}{c}
\omega_{1} \\
v_{1}
\end{array}\right] \times\left[\begin{array}{c}
\omega_{2} \\
v_{2}
\end{array}\right] \triangleq\left[\begin{array}{c}
\omega_{1} \times \omega_{2} \\
\omega_{1} \times v_{2}+v_{1} \times \omega_{2}
\end{array}\right]
$$

- Matrix representation: $\mathcal{V}_{1} \times \mathcal{V}_{2}=\left[\mathcal{V}_{1} \times\right] \mathcal{V}_{2}$, where

$$
\left[\mathcal{V}_{1} \times\right] \triangleq\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & 0 \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]
$$

- Roughly speaking, when a motion vector \mathcal{V} is moving with a spatial velocity \mathcal{Z} (e.g. it is attached to a moving frame) but is otherwise not changing, then

$$
\dot{\mathcal{V}}=\mathcal{Z} \times \mathcal{V}
$$

Spatial Cross Product: Properties $(1 / 1)$

- Assume A is moving wrt to O with velocity \mathcal{V}_{A}

$$
{ }^{\circ} \dot{X}_{A}=\left[{ }^{\circ} \mathcal{V}_{A} \times\right]^{\circ} X_{A}
$$

- $[X \mathcal{V} \times]=X[\mathcal{V} \times] X^{T}$, for any transformation X and twist \mathcal{V}

Spatial Acceleration with Moving Reference Frame

Consider a body with velocity $\mathcal{V}_{\text {body }}$ (wrt inertia frame), and $\mathcal{V}_{\text {body }}$ and ${ }^{\mathcal{V}} \mathcal{V}_{\text {body }}$ be its Plücker coordinates wrt $\{\mathrm{O}\}$ and $\{\mathrm{B}\}$:

- ${ }^{B} \mathcal{A}_{\text {body }}=\frac{d}{d t}\left({ }^{B} \mathcal{V}_{\text {body }}\right)+{ }^{B} \mathcal{V} \times{ }^{B} \mathcal{V}_{\text {body }}$
- ${ }^{\circ} \mathcal{A}={ }^{o} X_{B}{ }^{B} \mathcal{A}$

Spatial Acceleration Example

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Force (Wrench)

- Consider a rigid body with many forces on it and fix an arbitrary point O in space
- The net effect of these forces can be expressed as
- A force f, acting along a line passing through O
- A moment n_{O} about point O
- Spatial Force (Wrench): is given by the 6D vector

$$
\mathcal{F}=\left[\begin{array}{c}
n_{O} \\
f
\end{array}\right]
$$

Spatial Force in Plücker Coordinate Systems

- Given a frame $\{\mathrm{A}\}$, the Plücker coordinate of a spatial force \mathcal{F} is given by

$$
{ }^{A} \mathcal{F}=\left[\begin{array}{c}
{ }^{A} n_{o_{A}} \\
{ }^{A} f
\end{array}\right]
$$

- Coordinate transform: ${ }^{A} \mathcal{F}={ }^{A} X_{B}^{*}{ }^{B} \mathcal{F}$ where ${ }^{A} X_{B}^{*}={ }^{B} X_{A}{ }^{T}$

Wrench-Twist Pair and Power

- Recall that for a point mass with linear velocity v and linear force f. Then we know that the power (instantaneous work done by f) is given by $f \cdot v=f^{T} v$
- This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)
- Suppose a rigid body has a twist ${ }^{A} \mathcal{V}=\left({ }^{A} \omega,{ }^{A} v_{O_{A}}\right)$ and a wrench ${ }^{A} \mathcal{F}=\left({ }^{A} n_{O_{A}},{ }^{A} f\right)$ acts on the body. Then the power is simply

$$
P=\left({ }^{A} \mathcal{V}\right)^{T}{ }^{A} \mathcal{F}
$$

Joint Torque

- Consider a link attached to a 1-dof joint (e.g. revolute or prismatic). Let $\hat{\mathcal{S}}$ be the screw axis of the joint. The velocity of the link induced by joint motion is given by: $\mathcal{V}=\hat{\mathcal{S}} \dot{\theta}$
- \mathcal{F} be the wrench provided by the joint. Then the power produced by the joint is

$$
P=\mathcal{V}^{T} \mathcal{F}=\left(\hat{\mathcal{S}}^{T} \mathcal{F}\right) \dot{\theta} \triangleq \tau \dot{\theta}
$$

- $\tau=\hat{\mathcal{S}}^{T} \mathcal{F}=\mathcal{F}^{T} \hat{\mathcal{S}}$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
- Often times, τ is referred to as joint "torque" or generalized force

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Rotational Inertia (1/2)

- Recall momentum for point mass:

Rotational Inertia (2/2)

- Rotational Inertia: $\bar{I}=\int_{V} \rho(r)[r][r]^{T} d r$
- $\rho(\cdot)$ is the density function of the body
- \bar{I} depends on coordinate system
- It is a constant matrix if the origin coincides with CoM

Spatial Momentum

- Consider a rigid body with spatial velocity $\mathcal{V}_{C}=\left(\omega, v_{C}\right)$ expressed at the center of mass C
- Linear momentum:
- Angular momentum about CoM:
- Angular momentum about a point O :
- Spatial Momentum:

Change Reference Frame for Momentum

- Spatial momentum transforms in the same way as spatial forces:

$$
{ }^{A} h={ }^{A} X_{C}^{*}{ }^{C} h
$$

Spatial Inertia

- Inertia of a rigid body defines linear relationship between velocity and momentum.
- Spacial inertia \mathcal{I} is the one such that

$$
h=\mathcal{I V}
$$

- Let $\{C\}$ be a frame whose origin coincide with CoM. Then

$$
{ }^{c} \mathcal{I}=\left[\begin{array}{cc}
{ }^{c} \bar{I}_{c} & 0 \\
0 & m I_{3}
\end{array}\right]
$$

Spatial Inertia

- Spatial inertia wrt another frame $\{A\}$:

$$
{ }^{A} \mathcal{I}={ }^{A} X_{C}^{*}{ }^{C} \mathcal{I}^{C} X_{A}
$$

- Special case: ${ }^{A} R_{C}=I_{3}$

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Cross Product for Spatial Force and Momentum

Assume frame A is moving with velocity ${ }^{A} \mathcal{V}_{A}$

- ${ }^{A}\left[\frac{d}{d t} \mathcal{F}\right]=\frac{d}{d t}\left({ }^{A} \mathcal{F}\right)+{ }^{A} \mathcal{V} \times{ }^{* A} \mathcal{F}$
- ${ }^{A}\left[\frac{d}{d t} h\right]=\frac{d}{d t}\left({ }^{A} h\right)+{ }^{A} \mathcal{V} \times{ }^{*} h$

Newton-Euler Equation

- Newton-Euler equation:

$$
\mathcal{F}=\frac{d}{d t} h=\mathcal{I} \mathcal{A}+\mathcal{V} \times{ }^{*} \mathcal{I} \mathcal{V}
$$

- Adopting spatial vectors, the Newton-Euler equation has the same form in any frame

Derivations of Newton-Euler Equation

More Discussions

More Discussions

