MEE5114 Advanced Control for Robotics

Lecture 9: Dynamics of Open Chains

Prof. Wei Zhang

CLEAR Lab

Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

From Single Rigid Body to Open Chains

• Recall Newton-Euler Equation for a single rigid body:

$$\mathcal{F} = \frac{d}{dt}h = \mathcal{I}\mathcal{A} + \mathcal{V} \times^* \mathcal{I}\mathcal{V}$$

• Open chains consist of multiple rigid links connected through joints

• Dynamics of adjacent links are coupled.

• This lecture: model multi-body dynamics subject to joint constraints.

Preview of Open-Chain Dynamics

• Equations of Motion are a set of 2nd-order differential equations:

$$\tau = M(\theta)\ddot{\theta} + \tilde{c}(\theta, \dot{\theta})$$

- $\theta \in \mathbb{R}^n$: vector of joint variables; $\tau \in \mathbb{R}^n$: vector of joint forces/torques
- $M(\theta) \in \mathbb{R}^{n \times n}$: mass matrix
- $\tilde{c}(\theta,\dot{\theta})\in\mathbb{R}^n$: forces that lump together centripetal, Coriolis, gravity, friction terms, and torques induced by external forces. These terms depend on θ and/or $\dot{\theta}$
- Forward dynamics: Determine acceleration $\ddot{\theta}$ given the state $(\theta,\dot{\theta})$ and the joint forces/torques:

$$\ddot{\theta} \leftarrow \mathsf{FD}(\tau, \theta, \dot{\theta}, \mathcal{F}_{ext})$$

• Inverse dynamics: Finding torques/forces given state $(\theta,\dot{\theta})$ and desired acceleration $\ddot{\theta}$

$$\tau \leftarrow \mathsf{ID}(\theta, \dot{\theta}, \ddot{\theta}, \mathcal{F}_{ext})$$

Lagrangian vs. Newton-Euler Methods

 There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method and Newton-Euler method

Lagrangian Formulation

- Energy-based method
- Dynamic equations in closed form
- Often used for study of dynamic properties and analysis of control methods

Newton-Euler Formulation

- Balance of forces/torques
- Dynamic equations in numeric/recursive form
- Often used for numerical solution of forward/inverse dynamics

• We focus on Newton-Euler Formulation

Outline

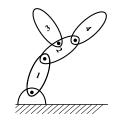
- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

RNEA: Notations

ullet Number bodies: 1 to N

- Parent: p(i)- Children: c(i)

• Joint i connects p(i) to i

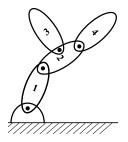


- ullet Frame $\{i\}$ attached to body i
- S_i : Spatial velocity (screw axis) of joint i
- V_i and A_i : spatial velocity and acceleration of body i
- \mathcal{F}_i : force (wrench) onto body i from body p(i)
- Note: By default, all vectors (S_i, V_i, F_i) are expressed in local frame $\{i\}$

RNEA: Velocity and Accel. Propagation (Forward Pass)

Goal: Given joint velocity $\dot{\theta}$ and acceleration $\ddot{\theta}$, compute the body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i

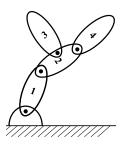
$$\begin{cases} \text{Velocity Propagation:} & {}^{i}\mathcal{V}_{i} = \left({}^{i}X_{p(i)}\right) \,\,{}^{p(i)}\!\mathcal{V}_{p(i)} + {}^{i}\mathcal{S}_{i}\,\dot{\theta}_{i} \\ \text{Accel Propagation:} & {}^{i}\mathcal{A}_{i} = \left({}^{i}X_{p(i)}\right) \,\,{}^{p(i)}\!\mathcal{A}_{p(i)} + {}^{i}\mathcal{V}_{i} \times {}^{i}\mathcal{S}_{i}\dot{\theta}_{i} + {}^{i}\mathcal{S}_{i}\ddot{\theta}_{i} \end{cases}$$



RNEA: Force Propagation (Backward Pass)

Goal: Given body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i , compute the joint wrench \mathcal{F}_i and the corresponding torque $\tau_i = \mathcal{S}_i^T \mathcal{F}_i$

$$\begin{cases} \mathcal{F}_i &= \mathcal{I}_i \mathcal{A}_i + \mathcal{V}_i \times^* \mathcal{I}_i \mathcal{V}_i + \sum_{j \in c(i)} \mathcal{F}_j \\ \tau_i &= \mathcal{S}_i^T \mathcal{F}_i \end{cases}$$



Recursive Newton-Euler Algorithm

$$\tau \leftarrow \mathsf{RNEA}(\theta, \dot{\theta}, \ddot{\theta}, \mathcal{F}_{ext}; \mathsf{Model})$$

• Forward pass:

• Backward pass:

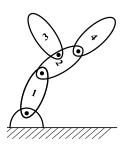
Outline

Introduction

- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

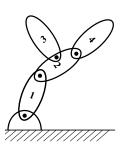
Structures in Dynamic Equation (1/3)

ullet Jacobian of each link (body): J_1,\ldots,J_4



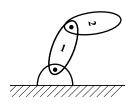
Structures in Dynamic Equation (2/3)

ullet Torque required to generate a "force" \mathcal{F}_4 to body 4



Structures in Dynamic Equation (3/3)

• Overall torque expression:



Derivation of Overall Dynamics Equation

•

$$\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta})\dot{\theta} + \tau_q + J^T(\theta)\mathcal{F}_{ext}$$
(1)

Properties of Dynamics Model of Multi-body Systems

•

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Forward Dynamics Problem

$$\tau = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta})\dot{\theta} + \tau_g + J^T(\theta)\mathcal{F}_{ext}$$
 (2)

- Inverse dynamics: $\tau \leftarrow \mathsf{RNEA}(\theta, \dot{\theta}, \ddot{\theta}, \mathcal{F}_{ext})$ O(N) complexity
 - RNEA can work directly with a given URDF model (kinematic tree + joint model + dynamic parameters). It does not require explicit formula for $M(\theta), \tilde{c}(\theta, \dot{\theta})$
- Forward dynamics: Given $(\theta, \dot{\theta})$, τ , \mathcal{F}_{ext} , find $\ddot{\theta}$
 - 1. Calculate $\tilde{c}(\theta, \dot{\theta})$
 - 2. Calculate mass matrix $M(\theta)$
 - 3. Solve $M\ddot{\theta} = \tau \tilde{c}$

Calculations of \tilde{c} and M

- ullet Denote our inverse dynamics algorithm: $au = \mathsf{RNEA}(heta, \dot{ heta}, \mathcal{F}_{ext})$
- Calculation of \tilde{c} : obviously, $\tau = \tilde{c}(\theta,\dot{\theta})$ if $\ddot{\theta} = 0$. Therefore, \tilde{c} can be computed via:

$$\tilde{c}(\theta, \dot{\theta}) = \mathsf{RNEA}(\theta, \dot{\theta}, 0, \mathcal{F}_{ext})$$

- Calculation of M: Note that $\tilde{c}(\theta, \dot{\theta}) = c(\theta, \dot{\theta})\dot{\theta} \tau_g J^T(\theta)\mathcal{F}_{ext}$.
 - Set g=0, $\mathcal{F}_{ext}=0$, and $\dot{\theta}=0$, then $\tilde{c}(\theta,\dot{\theta})=0$ \Rightarrow $\tau=M(\theta)\ddot{\theta}$
 - We can compute the jth column of $M(\theta)$ by calling the inverse algorithm

$$M_{:,j}(\theta) = \mathsf{RNEA}(\theta, 0, \ddot{\theta}_j^0, 0)$$

where $\ddot{\theta}_{j}^{0}$ is a vector with all zeros except for a 1 at the jth entry.

ullet A more efficient algorithm for computing M is the Composite-Rigid-Body Algorithm (CRBA). Details can be found in Featherstone's book.

Forward Dynamics Algorithm

- Now assume we have $\theta,\dot{\theta},\tau,M(\theta),\tilde{c}(\theta,\dot{\theta})$, then we can immediately compute $\ddot{\theta}$ as $\ddot{\theta}=M^{-1}(\theta)\left[\tau-\tilde{c}(\theta,\dot{\theta})\right]$
- This provides a 2nd-order differential equation in \mathbb{R}^n , we can easily simulate the joint trajectory over any time period (under given ICs θ^o and $\dot{\theta}^o$)
- Computational Complexity:
 - RNEA: O(N)
 - $\tilde{c} = RNEA(\theta, \dot{\theta}, 0, \mathcal{F}_{ext})$: O(N)
 - $M(\theta)$: $O(N^2)$
 - $M^{-1}(\theta)$: $O(N^3)$
 - Most efficient forward dynamics algorithm: Articulated-Body Algorithm (ABA): O(N)

More Discussions

•

More Discussions

•