MEE5114 Spring 2023	Homework # 5
Assigned April 13, 2023	Due: April 19, 2023

1. A cylinder rolls without slipping in the \hat{x}_0 direction. The cylinder has a radius of r and a constant forward speed of v. What is the spatial acceleration of this cylinder expressed in $\{0\}$, \mathcal{A} and expressed in $\{C\}$, \mathcal{A} , where frame $\{C\}$ has the same orientation as frame $\{0\}$ and its origin is at the contact point C.

2. Let ${}^{O}T_{A}=(R,p)$ be the pose of frame A. Suppose A is moving with velocity ${}^{O}\mathcal{V}_{A}=(\omega,v)$. Show that

$$\frac{d}{dt} \begin{bmatrix} {}^{\scriptscriptstyle O} X_A^* \end{bmatrix} = \begin{bmatrix} & \begin{bmatrix} \omega \end{bmatrix} & \begin{bmatrix} v \end{bmatrix} \\ & 0 & \begin{bmatrix} \omega \end{bmatrix} \end{bmatrix} {}^{\scriptscriptstyle O} X_A^*$$

3. A rigid body is a collection of point masses m_i as location p_i . Given a reference point o, the angular momentum of point mass i is $\overrightarrow{op_i} \times m_i v_i$. Given the definition of the angular momentum of the rigid body $\phi_o = \sum_i \overrightarrow{op_i} \times m_i v_i$, show that for any reference point o and q, we have

$$\phi_q = \phi_o + \overrightarrow{qo} \times L$$

where L is the linear momentum of the rigid body.

4. Given our derivation in class, we have $M(\theta) = \sum_i J_i^T \mathcal{I}_i J_i$ and $c(\theta, \dot{\theta}) = \sum_i J_i^T (\mathcal{I}_i \dot{J}_i + \mathcal{I}_i \mathcal{V}_i \times J_i + \mathcal{V}_i \times^* \mathcal{I}_i J_i)$. Prove that $\dot{M} - 2c$ is skew symmetric.