1. A cylinder rolls without slipping in the \hat{x}_{0} direction. The cylinder has a radius of r and a constant forward speed of v. What is the spatial acceleration of this cylinder expressed in $\{\mathrm{o}\},{ }^{\circ} \mathcal{A}$ and expressed in $\{\mathrm{C}\},{ }^{\mathcal{C}}$, where frame $\{\mathrm{C}\}$ has the same orientation as frame $\{\mathrm{o}\}$ and its origin is at the contact point C.

2. Let ${ }^{\circ} T_{A}=(R, p)$ be the pose of frame A. Suppose A is moving with velocity ${ }^{\circ} \mathcal{V}_{A}=(\omega, v)$. Show that

$$
\frac{d}{d t}\left[o_{X_{A}^{*}}^{*}\right]=\left[\begin{array}{cc}
{[\omega]} & {[v]} \\
0 & {[\omega]}
\end{array}\right] o_{X_{A}^{*}}
$$

3. A rigid body is a collection of point masses m_{i} as location p_{i}. Given a reference point o, the angular momentum of point mass i is $\overrightarrow{o p_{i}} \times m_{i} v_{i}$. Given the definition of the angular momentum of the rigid body $\phi_{o}=\sum_{i} \overrightarrow{\rho_{i}} \times m_{i} v_{i}$, show that for any reference point o and q, we have

$$
\phi_{q}=\phi_{o}+\overrightarrow{q o} \times L
$$

where L is the linear momentum of the rigid body.
4. Given our derivation in class, we have $M(\theta)=\sum_{i} J_{i}^{T} \mathcal{I}_{i} J_{i}$ and $c(\theta, \dot{\theta})=\sum_{i} J_{i}^{T}\left(\mathcal{I}_{i} \dot{J}_{i}+\mathcal{I}_{i} \mathcal{V}_{i} \times\right.$ $\left.J_{i}+\mathcal{V}_{i} \times{ }^{*} \mathcal{I}_{i} J_{i}\right)$. Prove that $M-2 c$ is skew symmetric.

