MEE5114 Advanced Control for Robotics

Lecture 10: Basics of Optimization

Prof. Wei Zhang

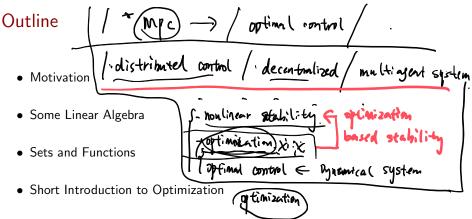
SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

con control: linear control / LOR / Adaptive control / Intelligent control

Friend system / robust control / nonlinear control / Loybrid

/ Sliding mode control (control & System

(55 u)

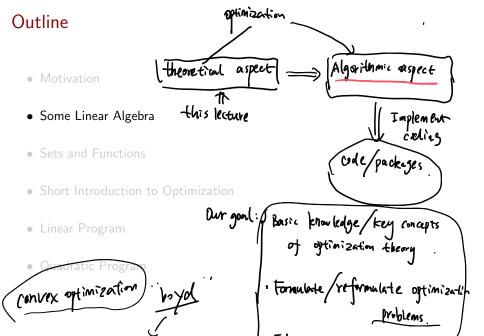


- Linear Program
- Quadratic Program

Motivation

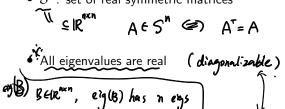
- Optimization is arguably the most important tool for modern engineering
- Robotics
 - Differential Inverse Kinematics OP

 Dynamics : RNEA (ABA)
 - Motion planning :
 - Whole body control: formulated as a quadratic program
 - SLAM:
 - Perception
- Machine Learning
 - Linear regression
 - Support vector machine:
 - Deep learning
- other domains
 - Check system stability: SDP
 - Compressive sensing
 - Fourier transform: least square problem
- Roughly speaking, most engineering problems (finding a better design, ensure certain properties of the solution, develop an algorithm), can be formulated as optimization/optimal control problems.



Real Symmetric Matrices

• S^n : set of real symmetric matrices



• There exists a full set of orthogonal eigenvectors

Spectral decomposition: If $A \in \mathcal{S}^n$, then $A = Q\Lambda Q^T$, where Λ diagonal and Q is unitary. Q is unitary: $Q^TQ = T$

- 12 1 12 + 3x2 Positive Semidefinite Matrices (1/4)= [[] [=] [] $\in \!\!\! \left(\! \mathcal{S}^{n} \!\!
 ight)$ is called *positive semidefinite (p.s.d.*), denoted by $(\!\! A \succeq 0\!\!)\!\!$, if $Ax \geq 0, \forall \emptyset \in \mathbb{R}^n$ x^TAx is a quadratic fun of x.
 - $A \in \mathcal{S}^n$ is called *positive definite (p.d.)*, denoted by $A \succ 0$, if $x^T A x > 0$ for all nonzero $x \in \mathbb{R}^n$
 - S_+^n : set of all p.s.d. (symmetric) matrices
 - S_{++}^n : set of all p.d. (symmetric) matrices
 - p.s.d. or p.d. matrices can also be defined for non-symmetric matrices.

e.g.:
$$\begin{bmatrix} -1 & 1 \end{bmatrix}$$

e.g.:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \alpha^{T} \wedge \alpha = \begin{bmatrix} \alpha_{1} \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha$$

$$\beta \implies \beta^{\text{sym}} = \frac{r}{l} (\beta + \beta_{\perp})$$

• We assume p.s.d. and p.d. are symmetric (unless otherwise noted)

lacksquare Notation: $A\succeq B$ (resp. $A\succ B$) means $A-B\in\mathcal{S}^n_+$ (resp. $A-B\in\mathcal{S}^n_{++}$) Aδο (=) A-BES!"

Positive Semidefinite Matrices (2/4) A B (element - wic)

- Other equivalent definitions for symmetric p.s.d. matrices:
 - All $2^n 1$ principal minors of A are nonnegative

$$\lambda_1$$
 - All eigs of A are nonnegative λ_1 - λ_2 - λ_1 >0

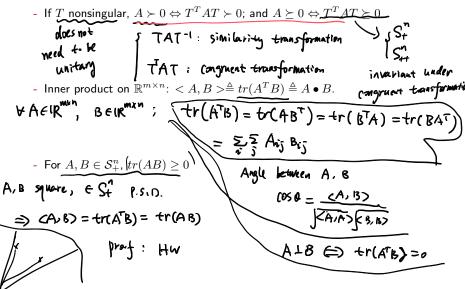
- There exists a factorization $A = B^T B$
- Other equivalent definitions for p.d.\ matrices:
 - All n leading principal minors of A are positive

$$\lambda_1$$
 - All eigs of A are strictly positive λ_1 - λ_2 > 0

- There exists a factorization
$$A = B^T B$$
 with B square and nonsingular.
• If $A \in S_1^A$, $A = Q \wedge Q^T = Q \wedge Q^A \wedge Q^A \wedge Q^A = Q \wedge Q^A \wedge Q^A \wedge Q^A \wedge Q^A = Q \wedge Q^A \wedge$

Positive Semidefinite Matrices (3/4)

• Useful facts:



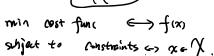
Positive Semidefinite Matrices (4/4)

- For any symmetric $A \in \mathcal{S}^n$,

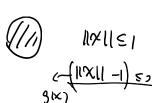
Outline

f(x) se

- Motivation
- Some Linear Algebra
- Sets and Functions **\(\sigma**



- Short Introduction to Optimization
- Linear Program
- Quadratic Program



Affine Sets and Functions (1/3)

• Linear mapping: f(x+y) = f(x) + f(y) and $f(\alpha x) = \alpha x$, for any x, y in some vector space, and $\alpha \in \mathbb{R}$

Eccomples:

$$f(x+y) = A(x+y) = Ax+Ay$$

$$f(x+y) = A(x+y) = Ax+Ay$$

$$f(x+y) = \int x(\tau)d\tau, \text{ for all integrable function } x(\cdot) \qquad x(\cdot) \in \mathbb{R}$$

$$f(x+y) = \int x(\tau)d\tau, \text{ for all integrable function } x(\cdot) \qquad x(\cdot) \in \mathbb{R}$$

$$f(x+y) = \int x(\tau)d\tau = \int x(\tau)d\tau \qquad f(x)d\tau \qquad f(x)d\tau$$

min tr(A,B) < LP.

Affine Sets and Functions (2/3)

• Affine mapping: f(x) is an affine mapping of x if $g(x) \triangleq f(x) - f(x_0)$ is a linear mapping for some fixed x_0

Finite-dimension representation of affine function: f(x) = Ax + bg(x) = f(x) - f(x)

Homogeneous representation in \mathbb{R}^n :

$$\underbrace{\frac{f(x) = Ax + b}{\text{with } \tilde{A} = \left[\begin{array}{cc} A & b \\ 0 & 1 \end{array} \right], \tilde{x} = \left[\begin{array}{c} x \\ 1 \end{array} \right]}_{}, \tilde{x}$$

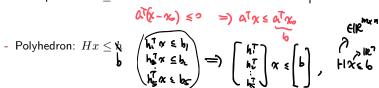
Linear and affine are often used interchangeably

Affine Sets and Functions (3/3) level set f(x) =0

- Linear/affine sets: $\{x:\underline{f(x)}\leq 0\}$ for affine mapping f $f: \mathbb{R}^n \to \mathbb{R}$ sublact set
 - Line/hyperplane: $a^T x = b$

$$a^{T}(\gamma-\infty)=0 \Rightarrow a^{T}\chi=\underbrace{a^{T}\chi}_{a}$$

- Half space: $a^Tx \leq b$



- For matrix variable $X \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AX) \leq 0$ for given constant matrix $A \in \mathbb{R}^{n \times n}$ is a halfspace in $\mathbb{R}^{n \times n}$

Quadratic Sets and Functions of f(x) = f(xfun= xi+ xi+322

- Quadratic functions in \mathbb{R}^n : $f(x) = x^T Ax + b^T x + d$ ute ocalari elku • Quadratic functions (homogeneous form): $f(x) = x^T A x$
 - $-\underbrace{A}_{-} \in \mathcal{S}_{+}^{\mathbf{n}} \Leftrightarrow \underbrace{f(x)}_{\text{positive semi-definite}} \left\{ \begin{array}{c} \mathbf{f(x)} \text{ is p.s.d.} \\ \text{over } \mathbf{D} \in \mathbb{R}^{n} \\ \mathbf{f(x)} \text{ is p.s.d.} \end{array} \right.$
 - Quadratic sets: $\{x:\in\mathbb{R}^n:f(x)\leq 0\}$ for some quadratic function f
 - e.g.: Ball: **CV2***.

e.g.: Ellipsoid:

14 / 40

Convex Set

) inear combination: χ_1, χ_2 $\chi_1 \chi_2 + \chi_3 \chi_4$

• Convex Set: A set S is convex if $= \alpha_1 \gamma_1 + \beta_1 \gamma_2$, $\alpha_1, \alpha_2 \gg 3$. $\alpha_1 + \alpha_2 = 1$ $x_1, x_2 \in S \quad \Rightarrow \quad \alpha x_1 + (1-\alpha)x_2 \in S, \forall \alpha \in [0,1]$ Consider that $x_1, x_2 \in S$

• Convex combination of x_1, \ldots, x_k :

$$\left\{\underline{\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_kx_k}:\alpha_i\geq 0, \text{ and } \sum_i\alpha_i=1\right\}$$

• Convex hull: $\overline{co}\left\{S\right\}$ set of all convex combinations of points in S

Cone

• A set S is called a cone if $\lambda > 0$, $x \in S \Rightarrow \lambda x \in S$.

• Conic combination of x_1 and x_2 :

$$x = \alpha_1 x_1 + \alpha_2 x_2$$
 with $\alpha_1, \alpha_2 \ge 0$

- Convex cone:
 - 1. a cone that is convex
 - 2. equivalently, a set that contains all the conic combinations of points in the set

Positive Semidefinite Cone (PSD cone) S

• The set of positive semidefinite matrices (i.e. S_+^n) is a convex cone and is referred to as the *positive semidefinite (PSD) cone*

Stimular if
$$A, B \in S_+^n$$
, then $(r(AB) \ge 0)$ This indicates that the cone S_+^n is a cute.

 $\langle A,B \rangle = tr(A^TB) = tr(AB)$

Operations that Preserve Convexity (1/1)

• Intersection of possibly infinite number of convex sets:

- e.g.: PSD cone:
$$\begin{cases} \chi \text{ is convex}, & f(\chi) = \{f(x) : x \in \chi\} \end{cases}$$

• Affine mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ (i.e. f(x) = Ax + b)

 $-(f(X)) = \{f(x) : x \in X\}$ is convex whenever $X \subseteq \mathbb{R}^n$ is convex e.g.: Ellipsoid: $E_1 = \{x \in \mathbb{R}^n : (x - x_c)^T P(x - x_c) \leq 1\}$ or equivalently

 $E_2 = \{x_c + Au \ \overline{: \|u\|_2} \le 1\}$ Ball: $\{x \in \mathbb{R}^n : \|x\|^2 \in \mathbb{N}\}$

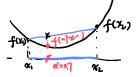
 $-f^{-1}(Y) = \{x \in \mathbb{R}^n : f(x) \in Y\}$ is convex whenever $Y \subseteq \mathbb{R}^m$ is convex e.g.: $\{Ax \leq b\} = f^{-1}(\mathbb{R}^n_+)$, where \mathbb{R}^n_+ is nonnegative orthant

Convex Function

Consider a finite dimensional vector space \mathcal{X} . Let $\mathcal{D} \subset \mathcal{X}$ be convex.

Definition 1 (Convex Function).

A function $f: \mathcal{D} \to \mathbb{R}$ is called convex if surely form $f(\underline{\alpha x_1 + (1-\alpha)x_2}) \biguplus \underline{\alpha} f(x_1) + (\underline{1-\alpha}) f(x_2), \forall x_1, x_2 \in \mathcal{D}, \forall \alpha \in [0,1]$



- $f: \mathcal{D} \to \mathbb{R}$ is called strictly convex if $f(\alpha x_1 + (1 \alpha)x_2) < \alpha f(x_1) + (1 \alpha)f(x_2), \forall x_1 \neq x_2 \in \mathcal{D}, \forall \alpha \in [0, 1]$
- ullet $f:\mathcal{D}
 ightarrow \mathbb{R}$ is called concave if -f is convex

How to Check a Function is Convex?

- Directly use definition
- First-order condition: If f is differentiable over an open set that contains \mathcal{D} , then f is convex over \mathcal{D} (ff)

$$f(z) \geq f(\underline{x}) + \nabla f(x)^T (z-x), \forall x, z \in \mathcal{D}$$
 Taylor expansion

• Second-order condition: Suppose f is twicely differentiable over an open set that contains \mathcal{D} , then f is convex over \mathcal{D} iff

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathcal{D}$$

• Many other conditions, tricks,...

Examples of Convex Functions

- In general, affine functions are both convex and concave
 - e.g.: $f(x) = a^T x + b$, for $x \in \mathbb{R}^n$

- e.g.:
$$f(X) = tr(A^T X) + c = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + c$$
, for $X \in \mathbb{R}^{m \times n}$

- Quadratic functions: $f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$ is convex iff $Q \succeq 0$ $\nabla^{2} f(x) = \begin{bmatrix} \frac{1}{2}x^{T}Qx + \frac{1}{2}x^$
- All norms are convex

- e.g. in
$$\mathbb{R}^n$$
: $f(x) = \underbrace{\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}}_{i=1}$; $f(x) = \|x\|_\infty = \max_k |x_k|$

- e.g. in
$$\mathbb{R}^{m \times n}$$
: $f(X) = \|X\|_2 = \sigma_{\max}(X)$

$$||x||_{\infty} = \max_{k} |x_{k}|$$

$$||Y||_{1} = |Y_{1}| + |Y_{2}|_{\infty} + |Y_{n}|$$

$$||X||_{\infty} = \max_{k} |X_{k}|$$

$$||X||_{2} = |X_{1}|_{\infty} + |X_{2}|_{\infty}$$

Outline - Affine mapping of convex fun is convex

- Motivation
- +:1K^-) 1R
- Pointwise maximum of movex func is convex.

- g(x)= max of fix, fo(x) is cauge
 - fice \
- Short Introduction to Optimization
- Linear Program

Quadratic Program

of.
$$f(x;0) = 0x+6 \Rightarrow g(x) = \left(\max_{0 \in \{1,2\}} 0x+6\right)$$

pointwise minimum of omcave is concave

Nonlinear Optimization Problems

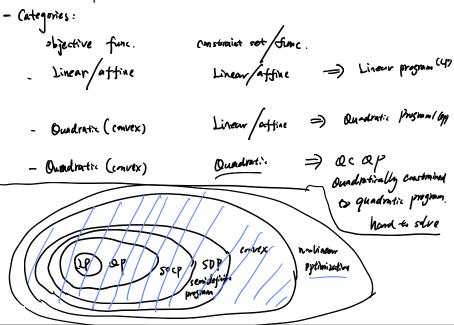
Nonlinear Optimization:

 $\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots, m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases} \quad \text{inequalities} \\ & C = \{\text{KeR}^n: \ \text{fineson}, \text{inequalities} \} \end{cases}$

- decision variable $\underline{x} \in \mathbb{R}^n$, domain \mathcal{D} , referred to as <u>primal problem</u>
- optimal value p^*
- is called a convex optimization problem if f_0, \ldots, f_m are convex and h_1, \ldots, h_q are affine
- typically convex optimization can be solved efficiently

Nonlinear Optimization Problems

Basic Optimization



min fly - How to find optimal slu? optimality condition for unconstrained optimization . Ist will at is local optimizen for then $\nabla f(x^*) = 0$ $O\left(\frac{\partial x}{\partial x}\right) = 0$ For convex problem, condition (1) surrankes of is Alol what about constrol need optimization?

Lagrangian

Associated Lagrangian:
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}$$

$$L(x, \lambda, \nu) \stackrel{2}{=} \underbrace{f_0(x)} + \sum_{i=1}^m \lambda_i \underbrace{f_i(x)} + \sum_{i=1}^q \underbrace{\nu_i h_i(x)} = 0$$

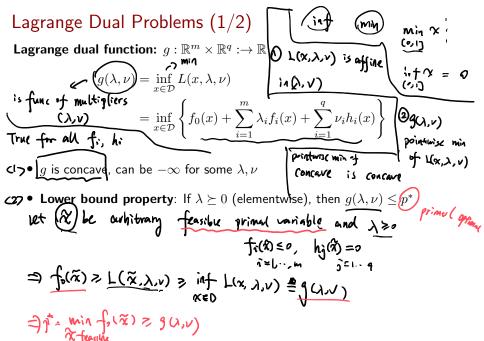
- weighted sum of objective and constraints functions
- λ_i : Lagrangian multiplier associated with $f_i(x) \leq 0$ require Di 20 - Vi
- ν_i : Lagrangian multiplier associated with $h_i(x) = 0$

If (λ, ν) dual

feasible, λ i.z., (λ, ν) frimal feasible

(i.e. $f_{\alpha}(x)$ s.s., $h_{\alpha}(x)$)

then $L(x, \lambda, \nu) \in f_{\beta}(x)$



Lagrange Dual Problems (2/2) nlway Convex optivities problem

Lagrange Dual Problem:

$$\begin{cases} \text{maximize} : g(\lambda, \nu) \\ \text{subject to} : \lambda \succeq 0 \end{cases} \qquad \begin{cases} \text{min} (-3(\nu, \nu)) \\ \text{subj} : \lambda \leq 0 \end{cases}$$

- ullet Find the best lower bound on p^* using the Lagrange dual function
- a convex optimization problem even when the primal is nonconvex
- optimal value denoted \underline{d}^*
- $\bullet \ (\lambda,\nu) \text{ is called } \mathbf{dual} \ \underline{\mathbf{feasible}} \ \text{if} \ \underline{\lambda \succeq 0} \ \text{and} \ (\lambda,\nu) \in \mathbf{dom}(g)$
- ullet Often simplified by making the implicit constraint $(\lambda, \nu) \in \operatorname{dom}(g)$ explicit

Duality Theorems

- Weak Duality: $d^* \leq p^*$
 - always hold (for convex and nonconvex problems)
 - can be used to find nontrivial lower bounds for difficult problems
- Strong Duality: $\underline{d^*} = p^*$
 - not true in general, but typically holds for convex problems
 - conditions that guarantee strong duality in convex problems are called *constraint* qualifications
 - Slater's constraint qualification: Primal is strictly feasible

General Optimality Conditions (1/3)

For general optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

General optimality condition:

strong duality and (x^*,λ^*,ν^*) is primal-dual optimal \Leftrightarrow

```
• x^* = \arg\min_x L(x, \lambda^*, \nu^*)

• \lambda_i^* f_i(x^*) = 0 for all i f_i(x^*) = \lambda_i^* f_i(x^*) = 0 (Complementarity)

• f_i(x^*) \le 0 h_j(x^*) = 0, for all i, j (primal feasibility)

• \lambda_i^* \ge 0 for all i (dual feasibility)
```

General Optimality Conditions (2/3)

Proof of Necessity

• Assume x^* and (λ^*, ν^*) are primal-dual optimal slns with zero duality gap, assume x^*

$$\frac{\int_{-\infty}^{\infty} f_0(x^*) = g(\lambda^*, \nu^*) = d^{\frac{1}{2}}}{\sum_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i} \lambda_i^* f_i(x) + \sum_{j} \nu_j^* h_j(x) \right)} \\
\leq \underbrace{\int_{-\infty}^{\infty} f_0(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{j} \nu_j^* h_j(x^*)}_{= \mathcal{D}} = \underbrace{L(x^*, \lambda^*, \nu^*)}_{= \mathcal{D}}$$

- Therefore, all inequalities are actually equalities
- Replacing the first inequality with equality $\Rightarrow x^* = \mathrm{argmin}_x L(x, \lambda^*, \nu^*)$
- \bullet Replacing the second inequality with equality \Rightarrow complementarity condition

General Optimality Conditions (3/3)

Proof of Sufficiency

• Assume (x^*, λ^*, ν^*) satisfies the optimality conditions:

$$g(\lambda^*, \nu^*) = f(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{j} \nu_j^* h_j(x^*)$$

= $f(x^*)$

 The first equality is by Lagrange optimality, and the 2nd equality is due to complementarity

• Therefore, the duality gap is zero, and (x^*, λ^*, ν^*) is the primal dual optimal solution

KKT Conditions

For **convex** optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

Suppose duality gap is zero, then (x^*, λ^*, ν^*) is primal-dual optimal if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

- $\frac{\partial L}{\partial x}(x,\lambda^*,\nu^*)=0$ (Stationarity)
- $\lambda_i^* f_i(x^*) = 0$ for all i (Complementarity)
- $f_i(x^*) \le 0$ $h_j(x^*) = 0$, for all i, j (primal feasibility)
- $\bullet \ \, \lambda_i^* \geq 0 \ \, \text{for all} \ \, i \qquad \qquad \text{(dual feasibility)}$

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Linear Program: Primal and Dual Formulations

• Primal Formulation:
$$\begin{cases} \min x & \alpha \in \mathbb{R}^{T} \\ \text{subject to:} & Ax = b \end{cases} & q - q \text{unlivey constraint} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation:
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{aligned}$$
• Primal Formulation:
$$\begin{cases}$$

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Unconstrained Quadratic Program: Least Squares

 $\bullet \ \ \text{minimize:} \quad J(x) = \tfrac{1}{2} x^T Q x + q^T x + q_0$

Λ

- $\bullet \ \, \text{Problem is convex iff} \,\, Q \succeq 0 \\$
- \bullet When J is convex, it can be written as: $J(x) = \|Q^{\frac{1}{2}}x y\|^2 + c$

• KKT condition:) Analytical solution

• Optimal solution:

Equality Constrained Quadratic Program

- Standard form: $\begin{cases} \min_x & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & Hx = h \end{cases}$
- $\bullet\,$ The problem is convex if $Q\succeq 0$
- KKT Condition: =) analytical solution

• Optimal Solution:

General Quadratic Program

• Standard form: $\begin{cases} \text{minimize:} & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & \underline{Ax \leq b} \end{cases}$

• Dual problem:

Numerical active set interior point

More Discussions

•

More Discussions

•