#### MEE5114 Advanced Control for Robotics

### Lecture 10: Basics of Optimization

#### Prof. Wei Zhang

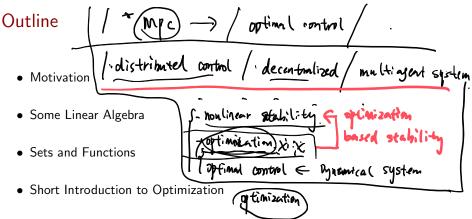
SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

con control: linear control / LOR / Adaptive control / Intelligent control

Friend system / robust control / nonlinear control / Loybrid

/ Sliding mode control ( control & System

( 55 u )

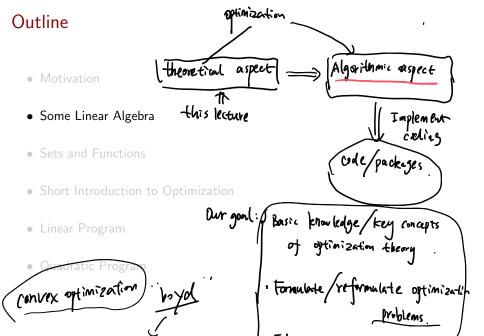


- Linear Program
- Quadratic Program

#### Motivation

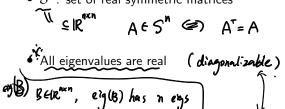
- Optimization is arguably the most important tool for modern engineering
- Robotics
  - Differential Inverse Kinematics OP

     Dynamics : RNEA (ABA )
  - Motion planning :
  - Whole body control: formulated as a quadratic program
  - SLAM:
  - Perception
- Machine Learning
  - Linear regression
  - Support vector machine:
  - Deep learning
- other domains
  - Check system stability: SDP
  - Compressive sensing
  - Fourier transform: least square problem
- Roughly speaking, most engineering problems (finding a better design, ensure certain properties of the solution, develop an algorithm), can be formulated as optimization/optimal control problems.



### Real Symmetric Matrices

•  $S^n$ : set of real symmetric matrices



• There exists a full set of orthogonal eigenvectors

Spectral decomposition: If  $A \in \mathcal{S}^n$ , then  $A = Q\Lambda Q^T$ , where  $\Lambda$  diagonal and Q is unitary. Q is unitary:  $Q^TQ = T$ 

- 12 1 12 + 3x2 Positive Semidefinite Matrices (1/4)= [ [ ] [ = ] [ ]  $\in \!\!\! \left( \! \mathcal{S}^{n} \!\! 
  ight)$  is called *positive semidefinite (p.s.d.*), denoted by  $(\!\! A \succeq 0\!\! )\!\!$ , if  $Ax \geq 0, \forall \emptyset \in \mathbb{R}^n$   $x^TAx$  is a quadratic fun of x.
  - $A \in \mathcal{S}^n$  is called *positive definite (p.d.)*, denoted by  $A \succ 0$ , if  $x^T A x > 0$  for all nonzero  $x \in \mathbb{R}^n$
  - $S_+^n$ : set of all p.s.d. (symmetric) matrices
  - $S_{++}^n$ : set of all p.d. (symmetric) matrices
  - p.s.d. or p.d. matrices can also be defined for non-symmetric matrices.

e.g.: 
$$\begin{bmatrix} -1 & 1 \end{bmatrix}$$

e.g.: 
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \alpha^{T} \wedge \alpha = \begin{bmatrix} \alpha_{1} \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{2}} \begin{bmatrix} 1 & 1 \\ \alpha_{3} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{3}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha_{4}} \begin{bmatrix} 1 & 1 \\ \alpha_{4} \end{bmatrix} = \underbrace{(\alpha_{1})^{T}}_{\alpha$$

$$\beta \implies \beta^{\text{sym}} = \frac{r}{l} (\beta + \beta_{\perp})$$

• We assume p.s.d. and p.d. are symmetric (unless otherwise noted)

lacksquare Notation:  $A\succeq B$  (resp.  $A\succ B$  ) means  $A-B\in\mathcal{S}^n_+$  (resp.  $A-B\in\mathcal{S}^n_{++}$ ) Aδο (=) A-BES!"

Positive Semidefinite Matrices (2/4) A B (element - wic)

- Other equivalent definitions for symmetric p.s.d. matrices:
  - All  $2^n 1$  principal minors of A are nonnegative

$$\lambda_1$$
 - All eigs of A are nonnegative  $\lambda_1$  -  $\lambda_2$  -  $\lambda_1$  >0

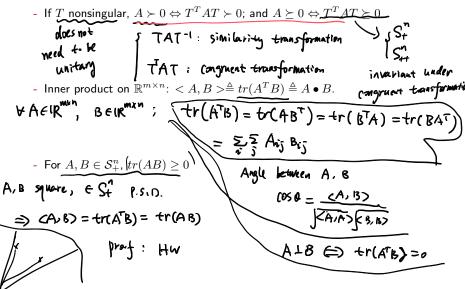
- There exists a factorization  $A = B^T B$
- Other equivalent definitions for p.d.\ matrices:
  - All n leading principal minors of A are positive

$$\lambda_1$$
 - All eigs of  $A$  are strictly positive  $\lambda_1$  -  $\lambda_2$  > 0

- There exists a factorization 
$$A = B^T B$$
 with  $B$  square and nonsingular.  
• If  $A \in S_1^A$ ,  $A = Q \wedge Q^T = Q \wedge Q^A \wedge Q^A \wedge Q^A = Q \wedge Q^A \wedge Q^A \wedge Q^A \wedge Q^A = Q \wedge Q^A \wedge$ 

### Positive Semidefinite Matrices (3/4)

• Useful facts:



### Positive Semidefinite Matrices (4/4)

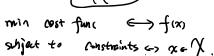
- For any symmetric  $A \in \mathcal{S}^n$ ,

### Outline

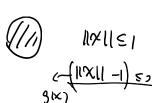
f(x) se

- Motivation
- Some Linear Algebra
- Sets and Functions **\( \sigma**





- Short Introduction to Optimization
- Linear Program
- Quadratic Program



### Affine Sets and Functions (1/3)

• Linear mapping: f(x+y) = f(x) + f(y) and  $f(\alpha x) = \alpha x$ , for any x, y in some vector space, and  $\alpha \in \mathbb{R}$ 

### Eccomples:

$$f(x+y) = A(x+y) = Ax+Ay$$

$$f(x+y) = A(x+y) = Ax+Ay$$

$$f(x+y) = \int x(\tau)d\tau, \text{ for all integrable function } x(\cdot) \qquad x(\cdot) \in \mathbb{R}$$

$$f(x+y) = \int x(\tau)d\tau, \text{ for all integrable function } x(\cdot) \qquad x(\cdot) \in \mathbb{R}$$

$$f(x+y) = \int x(\tau)d\tau = \int x(\tau)d\tau \qquad f(x)d\tau \qquad f(x)d\tau$$

min tr(A,B) < LP.

### Affine Sets and Functions (2/3)

• Affine mapping: f(x) is an affine mapping of x if  $g(x) \triangleq f(x) - f(x_0)$  is a linear mapping for some fixed  $x_0$ 

Finite-dimension representation of affine function: f(x) = Ax + bg(x) = f(x) - f(x)

Homogeneous representation in  $\mathbb{R}^n$ :

$$\underbrace{\frac{f(x) = Ax + b}{\text{with } \tilde{A} = \left[ \begin{array}{cc} A & b \\ 0 & 1 \end{array} \right], \tilde{x} = \left[ \begin{array}{c} x \\ 1 \end{array} \right]}_{}, \tilde{x}$$

Linear and affine are often used interchangeably

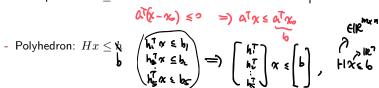
## Affine Sets and Functions (3/3) level set f(x) =0

- Linear/affine sets:  $\{x:\underline{f(x)}\leq 0\}$  for affine mapping f  $f: \mathbb{R}^n \to \mathbb{R}$  sublact set
  - Line/hyperplane:  $a^T x = b$

$$a^{T}(\gamma-\infty)=0 \Rightarrow a^{T}\chi=\underbrace{a^{T}\chi}_{a}$$



- Half space:  $a^Tx \leq b$ 



- For matrix variable  $X \in \mathbb{R}^{n \times n}$ ,  $\operatorname{tr}(AX) \leq 0$  for given constant matrix  $A \in \mathbb{R}^{n \times n}$  is a halfspace in  $\mathbb{R}^{n \times n}$ 





Quadratic Sets and Functions of f(x) = f(xfun= xi+ xi+322

- Quadratic functions in  $\mathbb{R}^n$ :  $f(x) = x^T Ax + b^T x + d$ ute ocalari elku • Quadratic functions (homogeneous form):  $f(x) = x^T A x$ 
  - $-\underbrace{A}_{-} \in \mathcal{S}_{+}^{\mathbf{n}} \Leftrightarrow \underbrace{f(x)}_{\text{positive semi-definite}} \left\{ \begin{array}{c} \mathbf{f(x)} \text{ is p.s.d.} \\ \text{over } \mathbf{D} \in \mathbb{R}^{n} \\ \mathbf{f(x)} \text{ is p.s.d.} \end{array} \right.$
  - Quadratic sets:  $\{x:\in\mathbb{R}^n:f(x)\leq 0\}$  for some quadratic function f
    - e.g.: Ball: **CV2**\*.

e.g.: Ellipsoid:

14 / 40

#### Convex Set

) inear combination:  $\chi_1, \chi_2$   $\chi_1 \chi_2 + \chi_3 \chi_4$ 

• Convex Set: A set S is convex if  $= \alpha_1 \gamma_1 + \beta_1 \gamma_2$ ,  $\alpha_1, \alpha_2 \gg 3$ .  $\alpha_1 + \alpha_2 = 1$  $x_1, x_2 \in S \quad \Rightarrow \quad \alpha x_1 + (1-\alpha)x_2 \in S, \forall \alpha \in [0,1]$  Consider that  $x_1, x_2 \in S$ 

• Convex combination of  $x_1, \ldots, x_k$ :

$$\left\{\underline{\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_kx_k}:\alpha_i\geq 0, \text{ and } \sum_i\alpha_i=1\right\}$$





• Convex hull:  $\overline{co}\left\{S\right\}$  set of all convex combinations of points in S





#### Cone

• A set S is called a cone if  $\lambda > 0$ ,  $x \in S \Rightarrow \lambda x \in S$ .



• Conic combination of  $x_1$  and  $x_2$ :

$$x = \alpha_1 x_1 + \alpha_2 x_2$$
 with  $\alpha_1, \alpha_2 \ge 0$ 



- Convex cone:
  - 1. a cone that is convex
  - 2. equivalently, a set that contains all the conic combinations of points in the set

# Positive Semidefinite Cone ( PSD cone) S

• The set of positive semidefinite matrices (i.e.  $S_+^n$ ) is a convex cone and is referred to as the *positive semidefinite (PSD) cone* 

Stimular if 
$$A, B \in S_+^n$$
, then  $(r(AB) \ge 0)$  This indicates that the cone  $S_+^n$  is a cute.

 $\langle A,B \rangle = tr(A^TB) = tr(AB)$ 

### Operations that Preserve Convexity (1/1)

• Intersection of possibly infinite number of convex sets:

- e.g.: PSD cone: 
$$\begin{cases} \chi \text{ is convex}, & f(\chi) = \{f(x) : x \in \chi\} \end{cases}$$

• Affine mapping  $f: \mathbb{R}^n \to \mathbb{R}^m$  (i.e. f(x) = Ax + b)

 $-(f(X)) = \{f(x) : x \in X\}$  is convex whenever  $X \subseteq \mathbb{R}^n$  is convex e.g.: Ellipsoid:  $E_1 = \{x \in \mathbb{R}^n : (x - x_c)^T P(x - x_c) \leq 1\}$  or equivalently

 $E_2 = \{x_c + Au \ \overline{: \|u\|_2} \le 1\}$  Ball:  $\{x \in \mathbb{R}^n : \|x\|^2 \in \mathbb{N}\}$ 

 $-f^{-1}(Y) = \{x \in \mathbb{R}^n : f(x) \in Y\}$  is convex whenever  $Y \subseteq \mathbb{R}^m$  is convex e.g.:  $\{Ax \leq b\} = f^{-1}(\mathbb{R}^n_+)$ , where  $\mathbb{R}^n_+$  is nonnegative orthant

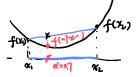


#### Convex Function

Consider a finite dimensional vector space  $\mathcal{X}$ . Let  $\mathcal{D} \subset \mathcal{X}$  be convex.

#### Definition 1 (Convex Function).

A function  $f: \mathcal{D} \to \mathbb{R}$  is called convex if surely form  $f(\underline{\alpha x_1 + (1-\alpha)x_2}) \biguplus \underline{\alpha} f(x_1) + (\underline{1-\alpha}) f(x_2), \forall x_1, x_2 \in \mathcal{D}, \forall \alpha \in [0,1]$ 









- $f: \mathcal{D} \to \mathbb{R}$  is called strictly convex if  $f(\alpha x_1 + (1 \alpha)x_2) < \alpha f(x_1) + (1 \alpha)f(x_2), \forall x_1 \neq x_2 \in \mathcal{D}, \forall \alpha \in [0, 1]$
- ullet  $f:\mathcal{D} 
  ightarrow \mathbb{R}$  is called concave if -f is convex



#### How to Check a Function is Convex?

- Directly use definition
- First-order condition: If f is differentiable over an open set that contains  $\mathcal{D}$ , then f is convex over  $\mathcal{D}$  (ff)



$$f(z) \geq f(\underline{x}) + \nabla f(x)^T (z-x), \forall x, z \in \mathcal{D}$$
 Taylor expansion



• Second-order condition: Suppose f is twicely differentiable over an open set that contains  $\mathcal{D}$ , then f is convex over  $\mathcal{D}$  iff

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathcal{D}$$

• Many other conditions, tricks,...

### **Examples of Convex Functions**

- In general, affine functions are both convex and concave
  - e.g.:  $f(x) = a^T x + b$ , for  $x \in \mathbb{R}^n$

- e.g.: 
$$f(X) = tr(A^T X) + c = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + c$$
, for  $X \in \mathbb{R}^{m \times n}$ 

- Quadratic functions:  $f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$  is convex iff  $Q \succeq 0$   $\nabla^{2} f(x) = \begin{bmatrix} \frac{1}{2}x^{T}Qx + \frac{1}{2}x^$
- All norms are convex

- e.g. in 
$$\mathbb{R}^n$$
:  $f(x) = \underbrace{\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}}_{i=1}$ ;  $f(x) = \|x\|_\infty = \max_k |x_k|$ 

- e.g. in 
$$\mathbb{R}^{m \times n}$$
:  $f(X) = \|X\|_2 = \sigma_{\max}(X)$ 

$$||x||_{\infty} = \max_{k} |x_{k}|$$

$$||Y||_{1} = |Y_{1}| + |Y_{2}|_{\infty} + |Y_{n}|$$

$$||X||_{\infty} = \max_{k} |X_{k}|$$

$$||X||_{2} = |X_{1}|_{\infty} + |X_{2}|_{\infty}$$

# Outline - Affine mapping of convex fun is convex

- Motivation
- +:1K^-) 1R
- Pointwise maximum of movex func is convex.

- g(x)= max of fix, fo(x) is cauge
  - fice \
- Short Introduction to Optimization
- Linear Program

Quadratic Program

of. 
$$f(x;0) = 0x+6 \Rightarrow g(x) = \left(\max_{0 \in \{1,2\}} 0x+6\right)$$

pointwise minimum of omcave is concave

### Nonlinear Optimization Problems

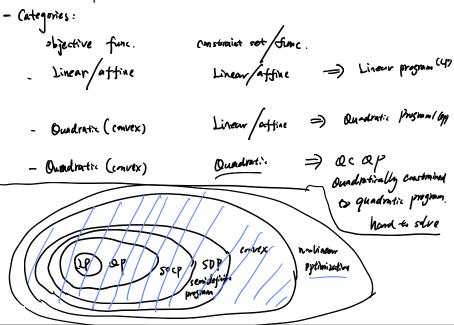
#### Nonlinear Optimization:

 $\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots, m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases} \quad \text{inequalities} \\ & C = \{\text{KeR}^n: \ \text{fineson}, \text{inequalities} \} \end{cases}$ 

- decision variable  $\underline{x} \in \mathbb{R}^n$ , domain  $\mathcal{D}$ , referred to as <u>primal problem</u>
- optimal value  $p^*$
- is called a convex optimization problem if  $f_0, \ldots, f_m$  are convex and  $h_1, \ldots, h_q$  are affine
- typically convex optimization can be solved efficiently

### Nonlinear Optimization Problems

Basic Optimization



min fly - How to find optimal slu? optimality condition for unconstrained optimization . Ist will at is local optimizen for then  $\nabla f(x^*) = 0$   $O\left(\frac{\partial x}{\partial x}\right) = 0$ For convex problem, condition (1) surrankes of is Alol what about constrol need optimization?

### Lagrangian

Associated Lagrangian: 
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}$$

$$L(x, \lambda, \nu) \stackrel{2}{=} \underbrace{f_0(x)} + \sum_{i=1}^m \lambda_i \underbrace{f_i(x)} + \sum_{i=1}^q \underbrace{\nu_i h_i(x)} = 0$$

- weighted sum of objective and constraints functions
- $\lambda_i$ : Lagrangian multiplier associated with  $f_i(x) \leq 0$ require Di 20 - Vi
- $\nu_i$ : Lagrangian multiplier associated with  $h_i(x) = 0$

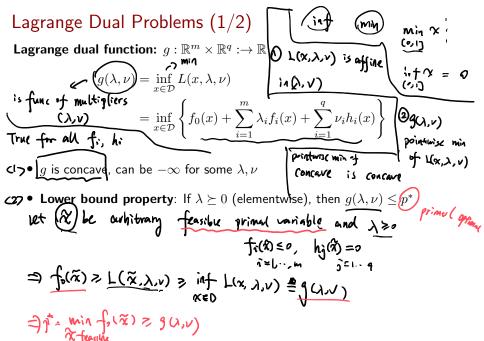
If  $(\lambda, \nu)$  dual

feasible,  $\lambda$  i.z.,  $(\lambda, \nu)$  frimal feasible

(i.e.  $f_{\alpha}(x)$  s.s.,  $h_{\alpha}(x)$ )

then  $L(x, \lambda, \nu) \in f_{\beta}(x)$ 





# Lagrange Dual Problems (2/2) nlway Convex optivities problem

Lagrange Dual Problem:

$$\begin{cases} \text{maximize} : g(\lambda, \nu) \\ \text{subject to} : \lambda \succeq 0 \end{cases} \qquad \begin{cases} \text{min} (-3(\nu, \nu)) \\ \text{subj} : \lambda \leq 0 \end{cases}$$

- ullet Find the best lower bound on  $p^*$  using the Lagrange dual function
- a convex optimization problem even when the primal is nonconvex
- optimal value denoted  $\underline{d}^*$
- $\bullet \ (\lambda,\nu) \text{ is called } \mathbf{dual} \ \underline{\mathbf{feasible}} \ \text{if} \ \underline{\lambda \succeq 0} \ \text{and} \ (\lambda,\nu) \in \mathbf{dom}(g)$
- ullet Often simplified by making the implicit constraint  $(\lambda, \nu) \in \operatorname{dom}(g)$  explicit

#### **Duality Theorems**

- Weak Duality:  $d^* \leq p^*$ 
  - always hold (for convex and nonconvex problems)
  - can be used to find nontrivial lower bounds for difficult problems
- Strong Duality:  $\underline{d^*} = p^*$ 
  - not true in general, but typically holds for convex problems
  - conditions that guarantee strong duality in convex problems are called *constraint* qualifications
  - Slater's constraint qualification: Primal is strictly feasible

### General Optimality Conditions (1/3)

For general optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

#### General optimality condition:

strong duality and  $(x^*,\lambda^*,\nu^*)$  is primal-dual optimal  $\Leftrightarrow$ 

```
• x^* = \arg\min_x L(x, \lambda^*, \nu^*)

• \lambda_i^* f_i(x^*) = 0 for all i f_i(x^*) = \lambda_i^* f_i(x^*) = 0 (Complementarity)

• f_i(x^*) \le 0 h_j(x^*) = 0, for all i, j (primal feasibility)

• \lambda_i^* \ge 0 for all i (dual feasibility)
```

### General Optimality Conditions (2/3)

#### **Proof of Necessity**

• Assume  $x^*$  and  $(\lambda^*, \nu^*)$  are primal-dual optimal slns with zero duality gap, assume  $x^*$ 

$$\frac{\int_{-\infty}^{\infty} f_0(x^*) = g(\lambda^*, \nu^*) = d^{\frac{1}{2}}}{\sum_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i} \lambda_i^* f_i(x) + \sum_{j} \nu_j^* h_j(x) \right)} \\
\leq \underbrace{\int_{-\infty}^{\infty} f_0(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{j} \nu_j^* h_j(x^*)}_{= \mathcal{D}} = \underbrace{L(x^*, \lambda^*, \nu^*)}_{= \mathcal{D}}$$

- Therefore, all inequalities are actually equalities
- Replacing the first inequality with equality  $\Rightarrow x^* = \mathrm{argmin}_x L(x, \lambda^*, \nu^*)$
- $\bullet$  Replacing the second inequality with equality  $\Rightarrow$  complementarity condition

### General Optimality Conditions (3/3)

#### **Proof of Sufficiency**

• Assume  $(x^*, \lambda^*, \nu^*)$  satisfies the optimality conditions:

$$g(\lambda^*, \nu^*) = f(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{j} \nu_j^* h_j(x^*)$$
  
=  $f(x^*)$ 

 The first equality is by Lagrange optimality, and the 2nd equality is due to complementarity

• Therefore, the duality gap is zero, and  $(x^*, \lambda^*, \nu^*)$  is the primal dual optimal solution

#### KKT Conditions

For **convex** optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

Suppose duality gap is zero, then  $(x^*, \lambda^*, \nu^*)$  is primal-dual optimal if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

- $\frac{\partial L}{\partial x}(x,\lambda^*,\nu^*)=0$  (Stationarity)
- $\lambda_i^* f_i(x^*) = 0$  for all i (Complementarity)
- $f_i(x^*) \le 0$   $h_j(x^*) = 0$ , for all i, j (primal feasibility)
- $\bullet \ \, \lambda_i^* \geq 0 \ \, \text{for all} \ \, i \qquad \qquad \text{(dual feasibility)}$

#### Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

### Linear Program: Primal and Dual Formulations

• Primal Formulation: 
$$\begin{cases} \min x & \alpha \in \mathbb{R}^{T} \\ \text{subject to:} & Ax = b \end{cases} & q - q \text{unlivey constraint} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{cases}$$
• Primal Formulation: 
$$\begin{cases} \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \\ \sum 0 & n - \text{ideq unlivey} \end{aligned}$$
• Primal Formulation: 
$$\begin{cases}$$

#### Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

### Unconstrained Quadratic Program: Least Squares

 $\bullet \ \ \text{minimize:} \quad J(x) = \tfrac{1}{2} x^T Q x + q^T x + q_0$ 

Λ

- $\bullet \ \, \text{Problem is convex iff} \,\, Q \succeq 0 \\$
- $\bullet$  When J is convex, it can be written as:  $J(x) = \|Q^{\frac{1}{2}}x y\|^2 + c$

• KKT condition: ) Analytical solution

• Optimal solution:

### **Equality Constrained Quadratic Program**

- Standard form:  $\begin{cases} \min_x & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & Hx = h \end{cases}$
- $\bullet\,$  The problem is convex if  $Q\succeq 0$
- KKT Condition: =) analytical solution

• Optimal Solution:

### General Quadratic Program

• Standard form:  $\begin{cases} \text{minimize:} & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & \underline{Ax \leq b} \end{cases}$ 

• Dual problem:

Numerical active set interior point

#### More Discussions

•

#### More Discussions

•