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Error ResponseChapter 11. Robot Control 407
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Figure 11.2: An example error response showing steady-state error ess, the overshoot,
and the 2% settling time.

This is a pth-order differential equation, because p time derivatives of θe are
present. The differential equation (11.1) is homogeneous if the constant c is
zero and nonhomogeneous if c 6= 0.

For homogeneous (c = 0) linear error dynamics, the pth-order differential
equation (11.1) can be rewritten as

θ(p)
e = − 1

ap
(ap−1θ

(p−1)
e + · · ·+ a2θ̈e + a1θ̇e + a0θe)

= −a′p−1θ
(p−1)
e − · · · − a′2θ̈e − a′1θ̇e − a′0θe. (11.2)

This pth-order differential equation can be expressed as p coupled first-order
differential equations by defining the vector x = (x1, . . . , xp), where

x1 = θe,

x2 = ẋ1 = θ̇e,

...
...

xp = ẋp−1 = θ(p−1)
e ,
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• Steady-state error:

• Percent overshoot:

• Rise time/Peak time:

• Settling time:
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Standard Second-Order Systems

θ̈e(t) + 2ξωnθ̇e(t) + ω2
nθe(t) = 0 ↔ s2 + 2ξωns+ ω2

n = 0

• ξ: damping ration, ωn: natural frequency

• Underdamped:

• Critically damped:

• Overdamped:

412 11.2. Error Dynamics
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Figure 11.5: (Top) Example root locations for overdamped, critically damped, and
underdamped second-order systems. (Bottom left) Error responses for overdamped,
critically damped, and underdamped second-order systems. (Bottom right) Relation-
ship of the root locations to properties of the transient response.

correspond to shorter settling times, and roots further away from the real axis
correspond to greater overshoot and oscillation. These general relationships be-
tween root locations and transient response properties also hold for higher-order
systems with more than two roots.

If the second-order error dynamics (11.8) is stable, the steady-state error ess

is zero regardless of whether the error dynamics is overdamped, underdamped,
or critically damped. The 2% settling time is approximately 4t, where t cor-
responds to the “slower” root s1 if the error dynamics is overdamped. The
overshoot is zero for overdamped and critically damped error dynamics and, for
underdamped error dynamics, the overshoot can be calculated by finding the
first time (after t = 0) where the error response satisfies θ̇e = 0. This is the
peak of the overshoot, and it occurs at

tp = π/ωd.
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Second-Order Response Characteristics412 11.2. Error Dynamics
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• Settling time:

• Peak time:

• Percent overshoot:
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State-Space Controller Design (1/2)

• Linear Control Systems: ẋ = Ax+Bu, y = Cx+Du

• Linear Control Law: u = −Kx

• Closed-loop Dynamics:

• Solution of CL-Dynamics:

• Closed-loop Stability condition:
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State-Space Controller Design (2/2)
• Eigenvalue assignment:

• Solvability:

• How to choose desired eigs?:

• LQR

Linear Control Advanced Control for Robotics Wei Zhang (SUSTech) 8 / 28










































































































































































































































































































































































































































































































































































































































































































































Robot Motion Control Problems (1/1)

• Dynamic equation of fully-actuated robot (without external force):{
τ =M(θ)q̈ + c(q, q̇)q̇ + g(q)

y = h(q)
(1)

• q ∈ Rn: joint positions (generalized coordinate)

• τ ∈ Rn: joint torque (generalized input)

• y: output (variable to be controlled)

• Motion Control Problems: Let y track given reference yd
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Variations in Robot Motion Control

• Joint-space vs. Task-space control:

- Joint-space: y(t) = q(t), i.e., want q(t) to track a given qd(t) joint reference

- Task-space: y(t) = T (q(t)) denotes end-effector pose/configuration, we want
y(t) to track yd(t)

• Actuation models:

- Velocity source: u = q̇

- Acceleration sources: u = q̈

- Torque sources: u = τ
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Outline

• Basic Linear Control Design

• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input and Task Space Inverse Dynamics
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Velocity-Resolved Control

• Each joints’ velocity q̇i can be directly controlled

• Good approximation for hydraulic actuators

• Common approximation of the outer-loop control for the Inner/outer loop
control setup
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Velocity-Resolved Joint Space Control

• Joint-space “dynamics”: single integrator

q̇ = u

• Joint-space tracking becomes standard linear tracking control problem:

u = q̇d +K0q̃ ⇒ ˙̃q +K0q̃ = 0

where q̃ = qd − q is the joint position error.

• The error dynamic is stable if −K0 is Hurwitz
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Velocity-Resolved Task-Space Control (1/3)

• For task space control, y = T (q) needs to track yd

- y can be any function of q, in particular, it can represents position and/or the
end-effector frame

• Taking derivatives of y, and letting u = q̇, we have

ẏ = Ja(q)u (2)

- Note that q is function of y through inverse kinematics.

- So the above dynamics can be written in terms of y and u only. The detailed
form can be quite complex in general
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Velocity-Resolved Task-Space Control (2/3)
• System (2) is nonlinear system, a common way is to break it into inner-outer

loop, where the outer loop directly control velocity of y, and the inner loop
tries to find u to generate desired task space velocity

• Outer loop: ẏ = vy, where control vy = ẏd +K0ỹ, resulting in task-space
closed-loop error dynamics:

˙̃y +K0ỹ = 0

• Above task space tracking relies on a fictitious control vy, i.e., it assumes ẏ
can be arbitrarily controlled by selecting appropriate u = q̇, which is true if
Ja is full-row rank.
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Velocity-Resolved Task-Space Control (3/3)
• Inner loop: Given vy from the outer loop, find the joint velocity control by

solving {
minu ∥vy − Ja(q)u∥2 + regularization term

subj. to: Constraints on u
(3)

• Inner-loop is essentially a differential IK controller

• One can also use the pseudo-inverse control u = J†
avy
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Acceleration-Resolved Control in Joint Space

• Joint acceleration can be directly controlled, resulting in double-integrator
dynamics

q̈ = u

• Joint-space tracking becomes standard linear tracking control problem for
double-integrator system:

u = q̈d +K1
˙̃q +K0q̃ ⇒ ¨̃q +K1

˙̃q +K0q̃ = 0

where q̃ = qd − q is the joint position error.

• Stability condition:

Resolved Case Advanced Control for Robotics Wei Zhang (SUSTech) 17 / 28






























































































































































































































































































































































































































































































































































































































































































































































































































































































































Acceleration-Resolved Control in Task Space (1/2)

• For task space control, y = T (q) needs to track yd

• Note: ẏ = Ja(q)q̇ and ÿ = J̇a(q)q̇ + Ja(q)q̈

• Following the same inner-outer loop strategy discussed before

• Outer-loop dynamics: ÿ = ay, with ay being the outer-loop control input

ay = ÿd +K1
˙̃y +K0ỹ ⇒ ¨̃y +K1

˙̃y +K0ỹ = 0
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Acceleration-Resolved Control in Task Space (2/2)
• Inner-loop: Given ay from outer loop, find the “best” joint acceleration:{

minu ∥ay − J̇a(q)q̇ − Ja(q)u∥2 + regularization term

subj. to: Constraints on u
(4)

• Mathematically, the above problem is the same as the Differential IK problem

• At any given time, q, q̇ can be measured, and then y and ẏ can be computed,
which allows us to compute outer loop control ay and inter loop control u

Resolved Case Advanced Control for Robotics Wei Zhang (SUSTech) 19 / 28















































































































































































































































































































































































































































































































Outline

• Basic Linear Control Design

• Motion Control Problems

• Motion Control with Velocity/Acceleration as Input

• Motion Control with Torque as Input and Task Space Inverse Dynamics
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Recall Properties of Robot Dynamics

For fully actuated robot:

τ =M(q)q̈ + C(q, q̇)q̇ + g(q) (5)

• M(q) ∈ Rn×n ≻ 0

• There are many valid definitions of C(q, q̇), typical choice for C include:

Cij =
∑
k

1

2

[
∂Mij

∂qk
+
∂Mik

∂qj
− ∂Mjk

∂qi

]
• For the above defined C, we have Ṁ − 2C is skew symmetric

• For all valid C, we have q̇T
[
Ṁ − 2C

]
q̇ = 0

• These properties play important role in designing motion controller
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Computed Torque Control (1/2)

• For fully-actuated robot, we have M(q) ≻ 0 and q̈ can be arbitrarily specified
through torque control u = τ

q̈ =M−1(q) [u− C(q, q̇)q̇ − g(q)]

• Thus, for fully-actuated robot, torque controlled case can be reduced to the
acceleration-resolved case

• Outer loop: q̈ = aq with joint acceleration as control input

aq = q̈d +K1
˙̃q +K0q̃ ⇒ ¨̃q +K1

˙̃q +K0q̃ = 0

• Inner loop: since M(q) is square and nonsingular, inner loop control u can be
found analytically:

u =M(q)
(
q̈d +K1

˙̃q +K0q̃
)
+ C(q, q̇)q̇ + g(q) (6)
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Computed Torque Control (2/2)
• The control law (6) is a function of q, q̇ and the reference qd. It is called
computed-torque control.

• The control law also relies on system model M,C, g, if these model
information are not accurate, the control will not perform well.

• Idea easily extends to task space: ẏ = Ja(q)q̇ and ÿ = J̇a(q)q̇ + Ja(q)q̈

• Outer loop: ÿ = ay, and ay = ÿd +K1
˙̃y +K0ỹ

• Inner loop: select torque control u = τ by{
minu ∥ay − J̇aq̇ − JaM−1(u− Cq̇ − g)∥2

subj. to: constraints
(7)

• If Ja is invertible and we don’t impose additional torque constraints,
analytical control law can be easily obtained.
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Inverse Dynamics Control (1/2)

• The computed-torque controller in (6) is also called inverse dynamics control

• Forward dynamics: given τ to compute q̈

• Inverse dynamics: given desired acceleration aq, we inverted it to find the
required control by u =Maq + Cq̇ + g

• Task space case can be viewed as inverting the task space dynamics

• With recent advances in optimization, it is often preferred to do ID with
quadratic program
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Inverse Dynamics Control (2/2)
• For example, Eq (7) can be viewed as task-space ID. We can incorporate

torque contraints explicitly as follows:{
minu ∥ay − J̇aq̇ − JaM−1(u− Cq̇ − g)∥2

subj. to: u− ≤ u ≤ u+
(8)

• This is equivalent to the following more popular form:
min
u,q̈

∥ay − J̇aq̇ − Jaq̈∥2

subj. to: Mq̈ + Cq̇ + g = u

u− ≤ u ≤ u+
(9)
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More Discussions

•
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