MEE5114 Advanced Control for Robotics．
Lecture 12：Robot Motion Control

Prof．Wei Chang

CLEAR Lab
Department of Mechanical and Energy Engineering Southern University of Science and Technology，Shenzhen，China https：／／www．wzhanglab．site／
机知人，具有娄似式琶暿人的远动能力，什算的力
委知次策能力机电系统

Outline

- Basic Linear Control Design
- Motion Control Problems
- Motion Control with Velocity/Acceleration as Input
- Motion Control with Torque as Input and Task Space Inverse Dynamics

Outline

- Basic Linear Control Design
- Motion Control Problems
- Motion Control with Velocity/Acceleration as Input
- Motion Control with Torque as Input and Task Space Inverse Dynamics

Error Response

- Steady-state error: $e_{s s} \triangleq \lim _{t \rightarrow \infty} \theta_{e}(t)$
- Percent overshoot: P. 0.
work for all systems.
- Rise time/Peak time:
- Settling time: T_{s}

Standard Second-Order Systems

$$
H(s)=\frac{w_{n}^{2}}{s Q 5}
$$

- ξ : damping ration, ω_{n} : natural frequency
- Underdamped: $\zeta<1, \theta_{e}(t)=e^{-\xi \omega_{n} t}\left(c_{1} \cos \omega_{a} t\right.$
- Critically damped:

$$
3>1, \quad \theta_{e}(t)=c_{1} e^{s_{1} t}+c_{2} e^{s_{2} t}
$$

Second-Order Response Characteristics ($\xi<1$)

$$
S_{12}=-\xi w_{1} \pm g^{\prime} w_{n} \sqrt{1-\zeta^{2}}
$$

- Settling time: $T_{s} \approx \frac{4}{3 w_{n}}$ (faster T_{s} : larger ζw_{n}

$$
\cos \theta=3
$$

- Peak time: $T_{p} \approx \frac{\pi}{\left(w_{n} \sqrt{1-\xi^{2}}\right.} \Leftrightarrow \omega_{d}$
- Percent overshoot: $1.0=100 e \frac{-3 x}{\sqrt{1-y^{2}}}$

$\cos \theta$

State-Space Controller Design (1/2)

- Linear Control Systems: $\dot{x}=A x+B u, y=C x+D u$
- Regulation problem: we va we want $x(*) \rightarrow 0 . y(t) \rightarrow 0$
- Tracking problem: $\tilde{x}(t)=\tilde{x}(t)-x(t)$, we want $\tilde{x}(t) \rightarrow 0$
- Linear Control Law: $u=-\underline{\sim}$ regulation

- Closed-loop Dynamics:
- Solution of CL-Dynamics:

$$
\begin{aligned}
& \dot{x}=A x+B(-k x)=\frac{(A-B k) x}{A C L} \\
& \dot{x}=A_{c L \cdot} \cdot x
\end{aligned}
$$

$$
x(t)=e^{A_{c l} \cdot t} x(0)
$$

- Closed-loop Stability condition: we want $\|x(x)\| \rightarrow 0$ we need $\operatorname{eig}(A a) \in O L H P$

State-Space Controller Design (2/2)

- Eigenvalue assignment: Find control gain K such that

$$
\operatorname{eig}(A-B K)=e j d \text { rived }
$$

- Solvability: we can always find such k if (A, B) is

$$
\text { controllable }\left(\operatorname{rank}\left(m_{c}\right)=n\right)
$$

- How to choose desired digs?: vefer to $2^{\text {nd }}$-order system

Robot Motion Control Problems (1/1)

- Dynamic equation of fully-actuated robot (without external force):
- $q \in \mathbb{R}^{n}$: joint positions (generalized coordinate)
- $\tau \in \mathbb{R}^{n}$: joint torque (generalized input)
- y : output (variable to be controlled) can be any func of q

$$
e \cdot g . \quad y=q, \quad y=T(q) \in S E(S)
$$

- Motion Control Problems: Let y track given reference y_{d}

Variations in Robot Motion Control oftentimes ale is give by planner represented by polynomials. so that

- Joint-space vs. Task-space control: $\dot{a} d, i_{a}$ can bc
- Joint-space: $y(t)=q(t)$, i.e., want $q(t)$ to track a given $q_{d}(t)$ joint reference easily, brained
- Task-space: $y(t)=T(q(t))$ denotes end-effector pose/configuration, we want $y(t)$ to track $y_{d}(t) \quad \bigcup \in S E(3)$
- Actuation models:
- Velocity source: $u=\dot{q}$ directly control velocity.

- Acceleration sources: $u=\ddot{q}$ directly control acc", u= i

Actuation model make

- Torque sources: $u=\tau \quad$ directly control torque

Outline

- Motion Control with Velocity/Acceleration as Input
- Motion Control with Torque as Input and Task Space Inverse Dynamics
- Motion content problem $\xrightarrow{u} r_{0}$

Design u to let y track desired reference $y d$

- Depending on our assumption on u / y. (Key: Divide \& conquer)

Velocity-Resolved Control

- Each joints' velocity \dot{q}_{i} can be directly controlled
- Good approximation for hydraulic actuators
- Common approximation of the outer-loop control for the Inner/outer loop control setup

single integrator

Velocity-Resolved Joint Space Control

- Joint-space "dynamics": single integrator $\Rightarrow \bar{y}=4 \ldots$... (1)

$$
\dot{q}=@ \ldots
$$

- Joint-space tracking becomes standard linear tracking control problem:

$$
u=\dot{\underline{q}}_{d}+K_{0} \tilde{q} \quad \Rightarrow \dot{\tilde{q}}+K_{0} \tilde{q}=0
$$

where $\tilde{q}=q_{d}-q$ is the joint position error.

$$
\dot{q}=\dot{q}_{\alpha}+k_{0} \tilde{q} \Rightarrow \dot{q}+k_{0} \tilde{q}=0
$$

- The error dynamic is stable if $-K_{0}$ is Hurwitz $\dot{\tilde{q}}=-k_{0} \tilde{q}$ common choice:

$$
k_{0}=\left[\begin{array}{llll}
k_{2,1} & & & \\
& k_{0,2} & & \\
& & \ddots & \\
& & k_{0,4}
\end{array}\right]
$$

stable

$$
\text { if } a^{\prime} g\left(-k_{0}\right) \in O L H P
$$

Velocity-Resolved Task-Space Control (1/3),

- For task space control, $y=T(q)$ needs to track y_{d}

- y can be any function of q, in particular, it can represents position and/or the end-effector frame

$$
\bar{x}=f(x, n)
$$

- Taking derivatives of y, and letting $u=\dot{q}$, we have

$$
\begin{equation*}
\dot{y}=J_{u}(q) \dot{q} u \dot{y}=J_{a}(q) u \tag{2}
\end{equation*}
$$

\qquad \rightarrow Is this start spec mode

- Note that q is function of y through inverse kinematics.

$$
q=I k(y)
$$

$$
V \dot{v}=2 n
$$

- So the above dynamics can be written in terms of y and u only. The detailed form can be quite complex in general
(1): $\dot{y}=u$

$$
\dot{y}=\frac{J_{a}(I k(y)) u}{V_{y}\left(-V_{i}\right. \text { ital contain) }}
$$

$0 \Leftrightarrow\left(0\right.$ if $J_{a}($)

Divide \& conquer: $\quad \dot{y}=J a(I K(y)) u$

1) Let v_{y} le virtual control. $\quad \dot{y}=v_{y}$
design v_{y} to track y_{d} (same as previous case)
(2) Find actual control u such that $J_{a}(I K(y)) u \approx v_{y}$
ley.

- We can design outer-Lap controller as if we com directly content \dot{y}

$$
V_{y}=\dot{y}_{d}+k\left(y_{d}-y\right) \stackrel{\text { login } \dot{y}=v_{y}}{\Longrightarrow} \quad \dot{\tilde{y}}=-k \tilde{y}
$$

we can select k such that $-k$ is Hurtwiz objective of inner Loop : determine $u=i$ such that $\dot{y} \approx v_{y}$.. we can let $\dot{y}=J_{a}(q) u \Rightarrow u=J_{a}^{+}(q) v_{y}$

Velocity-Resolved Task-Space Control (2/3)

- System (2) is nonlinear system, a common way is to break it into inner-outer loop, where the outer loop directly control velocity of y, and the inner loop tries to find u to generate desired task space velocity
- Outer loop: $\dot{y}=v_{y}$, where control $v_{y}=\dot{y}_{d}+K_{0} \tilde{y}$, resulting in task-space closed-loop error dynamics:

$$
\dot{\tilde{y}}+K_{0} \tilde{y}=0
$$

- Above task space tracking relies on a fictitious control v_{y}, i.e., it assumes \dot{y} can be arbitrarily controlled by selecting appropriate $u=\dot{q}$, which is true if J_{a} is full-row rank.

Velocity-Resolved Task-Space Control (3/3)

- Inner loop: Given v_{y} from the outer loop, find the joint velocity control by solving

$$
\left\{\begin{array} { r l }
{ } & { \operatorname { m i n } _ { u } \| v _ { y } - J _ { a } (q) u \| ^ { 2 } + \text { regularization term } } \tag{3}\\
{ \text { subj. to: } \quad \text { Constraints on } u }
\end{array} \left\{\begin{array}{l}
\text { es. } \dot{q}_{\text {min }} \leq u \leq \dot{q}_{\text {max }}
\end{array} \quad \begin{array}{l}
q_{\text {min }} \leq q+u \cdot \Delta t \leq q_{\text {max }}
\end{array}\right.\right.
$$

- Inner-loop is essentially a differential IK controller
- One can also use the pseudo-inverse control $u=J_{a}^{\dagger} v_{y}$

Acceleration-Resolved Control in Joint Space \Leftrightarrow

- Joint acceleration can be directly controlled, resulting in double-integrator dynamics
Given q_{α} reference, we want $q \rightarrow q_{\alpha} \quad \ddot{q}=i_{u}^{-()}$(double integrator)
- Joint-space tracking becomes standard linear tracking control problem for double-integrator system:
where $\tilde{q}=q_{d}-\underline{q}$ is the joint position error.
- Stability condition: Let $x=\left[\begin{array}{c}\tilde{q} \\ \dot{q}\end{array}\right] \in \mathbb{R}^{2^{n}}$,
closed-lop system is stable

$$
\dot{x}=\underbrace{\left[\begin{array}{c}
0 \\
\hline k_{0} \\
\hdashline-k_{1} \\
\hdashline \underbrace{}_{1}
\end{array}\right]}_{2 n \times 2 n}\left[\begin{array}{c}
\tilde{q} \\
\dot{z}
\end{array}\right]
$$

$$
\text { if } \operatorname{erg}(A) \in O L H P
$$

or A is Hurwitz

$$
\dot{x}=A x
$$

Acceleration-Resolved Control in Task Space (1/2)

- For task space control, $y=T(q)$ needs to track y_{d}

Fir $y=f(q) \downarrow$

- Note: $\dot{y}=\underbrace{J_{a}(q)} \dot{q}$ and $\ddot{y}=\dot{J}_{a}(q) \dot{q}+J_{a}(q) \ddot{q})_{u}$
$\epsilon \mathbb{S e}_{3} G$

(SEE)

$$
\ddot{y}=\underbrace{a_{b}}_{J_{a}(q) \dot{q}+J_{a}(q) u} \in \text { nonlinear dynamics }
$$

- Following the same inner-outer loop strategy discussed before
- Introduce virtual control. Dy such that $\ddot{y}=a_{y}$ we con devon contrilior for by
- Inner-Lap, chook u to produce $\ddot{y} \approx a_{y} \quad$ to be $y \rightarrow y_{l}$
- Outer-loop dynamics: $\ddot{y}=a_{y}$, with a_{y} being the outer-loop control input

Acceleration-Resolved Control in Task Space (2/2)

- Inner-loop: Given a_{y} from outer loop, find the "best" joint acceleration:

- Mathematically, the above problem is the same as the Differential IK problem
- At any given time, q, \dot{q} can be measured, and then y and \dot{y} can be computed, which allows us to compute outer loop control a_{y} and inter loop control u

Outline

- Basic Linear Control Design
- Motion Control Problems
- Motion Control with Velocity/Acceleration as Input
- Motion Control with Torque as Input and Task Space Inverse Dynamics

Recall Properties of Robot Dynamics

For fully actuated robot:

- $M(q) \in \mathbb{R}^{n \times n} \succ 0$

$$
\begin{align*}
& \tau=M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q) \tag{5}\\
& M(\xi)=\sum_{i} J_{i}^{\top} \nearrow_{i} J_{i} \quad \prod_{i \times 6}>0
\end{align*}
$$

- There are many valid definitions of $C(q, \dot{q})$, typical choice for C include:

$$
C_{i j}=\sum_{k} \frac{1}{2}\left[\frac{\partial M_{i j}}{\partial q_{k}}+\frac{\partial M_{i k}}{\partial q_{j}}-\frac{\partial M_{j k}}{\partial q_{i}}\right]
$$

- For the above defined C, we have $-2 C$ is skew symmetric
- For all valid C, we have $\dot{d}^{T}[\dot{M}-2 C] \dot{q}=0$
- These properties play important role in designing motion controller

Computed Torque Control (1/2) we know hov to desist. Controller

 if $u=\ddot{q} \xrightarrow{n-\ddot{q}}$ robot \xrightarrow{y}- For fully-actuated robot, we have $M(q) \succ 0$ and \ddot{q} can be arbitrarily specified through torque control $u=\tau$

$$
\ddot{q}=M^{-1}(q)[u-C(q, \dot{q}) \dot{q}-g(q)]
$$

- Thus, for fully-actuated robot, torque controlled case can be reduced to the acceleration-resolved case
- Outer loop: $\ddot{q}=a_{q}$ with joint acceleration as control input

- Inner loop: since $M(q)$ is square and nonsingular, inner loop control u can be found analytically:

$$
\begin{equation*}
\underbrace{u}=M(q) \underbrace{\left(\ddot{q}_{d}+K_{1} \dot{\tilde{q}}+K_{0} \tilde{q}\right)}_{q}+C(q, \dot{q}) \dot{q}+g(q) \tag{6}
\end{equation*}
$$

Computed Torque Control $(2 / 2) \quad \tau=M \ddot{q}+c+g$

- The control law (6) is a function of q, \dot{q} and the reference q_{d}. It is called computed-torque control.
- The control law also relies on system model M, C, g, if these model information are not accurate, the control will not perform well.

$$
y=f(q)
$$

$$
\text { form well. } \dot{y}=\left(\frac{l}{u_{n}}(q) q+J_{n}(q) M^{-1}(u-c g)\right.
$$

- Idea easily extends to task space: $\dot{y}=J_{a}(q) \dot{q}$ and $\ddot{y}=\dot{J}_{a}(q) \dot{q}+J_{a}(q(\ddot{q})$
- Outer loop: $\ddot{y}=a_{y}$ and $a_{y}=\ddot{y}_{d}+K_{1} \dot{\tilde{y}}+K_{0} \tilde{y}$

$$
u=\tau
$$

- Inner loop: select torque control $u=\tau$ by

$$
\underbrace{ \begin{cases}\left.\min _{u} \| a_{y}-\left(\frac{\left(\dot{j}_{a} \dot{q}-J_{a} M^{-1}(u-C \dot{q}-g)\right.}{}\right)\right)^{2} \tag{7}\\ \text { subj. to: } & \text { constraints }\end{cases} }
$$

- If J_{a} is invertible and we don't impose additional torque constraints, analytical control law can be easily obtained.

Inverse Dynamics Control (1/2)

- The computed-torque controller in (6) is also called inverse dynamics control

FD: from torque to un-tion
 required control by $u=M a_{q}+C \dot{q}+g$

- Task space case can be viewed as inverting the task space dynamics
Give may
y in tack space.
find $\tau \xrightarrow[s]{s u c h}$ such that τ
$\ddot{y} \approx a_{y}$
- With recent advances in optimization, it is often preferred to do ID with quadratic program

Inverse Dynamics Control (2/2)

- For example, Eq (7) can be viewed as task-space ID. We can incorporate torque constraints explicitly as follows:

$$
\begin{cases} & \min _{u}\|a_{y}-\dot{J}_{a} \underbrace{\dot{q}-J_{a} M^{-1}(u-C \dot{q}-g)}\|^{2} \tag{8}\\ \text { subj. to: } \quad u_{-} \leq u \leq u_{+} \\ \text {otimizatim variable ueten }\end{cases}
$$ optimization variable uelen

SID

- This is equivalent to the following more popular form:

$$
\begin{cases}\min _{u, \ddot{q}} & \left\|a_{y}-\dot{J}_{a} \dot{q}-J_{a} \ddot{q}\right\|^{2}+ \\ \text { subj. to: } & M \ddot{q}+C \dot{q}+g=u \\ & u_{-} \leq u \leq u_{+}\end{cases}
$$

More Discussions

More Discussions

More Discussions

